学年

教科

質問の種類

数学 高校生

下から4行目のbm+2がなぜ、b1.b3.b5となるのかわからないです。教えてください

重要 例題 数列{an}, {0} の一般項を an=3n-1,b=2" とする。 列{an} の項でもあるものを小さい方から並べて数列{c} を作るとき, の一般項を求めよ。 学ごとに意を元金 数の項のうち、数 数列{col 10g 重要 93, 基本 99 12. 指針 > 2つの等差数列の共通な項の問題(例題93)と同じようにとおすきなうとしてと 関係を調べるが,それだけでは{cm} の一般項を求めることができない。 そこで,数列{an}, {bn} の項を書き出してみると,次のようになる。 {az}:2,5,8, 11, 14, 17, 20, 23, 26, 29,32, {0}:2,4,8,16,32, Ci=b, C2=bs,C3= bs となっていることから, 数列{6} を基準として, 6m+1が数列{c.) の項となるかどうか, bm+2 が数列{a} の項となるかどうか… 見つける。 を順に調べ, 規則性を (1-b)n-bs 104 指 解答 α=2, b1=2であるから C1=2 (14b)(1-B 数列{an} の第1項が数列{6} の第m項に等しいとするとb-b8 3l-1=2m 0-(8-bb ゆえに bm+1=2m+1=2".2=(3-1) ・2 E="b 24 =3.21-2 ① よって, bm+1 は数列{an} の項ではない。 ①から bm+2=26m+1=3・4l-4 - <30-1 の形にならない。 =3(4-1)-1 ゆえに, bm+2 は数列{an} の項である。 したがって {C}:b1,63,65, ...... 数列{c} は公比 2 の等比数列で, C1=2 であるから Cn=2(22)"-1=22n-1 =41 などと答えてもよ い。

回答募集中 回答数: 0
数学 高校生

(3)と(4)がわからないです!お願いしますm(_ _)m

基礎向 96 倍数の規則 ①から⑥までの数字が1つずつかかれた6枚のカードがある。 これから3枚を選んで並べることにより、3桁の整数をつくる このとき,次のような整数はいくつあるか. (1)2の倍数 3の倍数 4の倍数 6 の倍数 ある整数がどんな数の倍数になっているかを調べる方法は,以下の 精講 ようになります. これを知らないと問題が解けません。 ・2の倍数:一の位の数字が偶数 ・3の倍数 各位の数字の和が3の倍数 ・4の倍数: 下2桁の数が4の倍数 ・5の倍数:一の位の数字が 0 または5 ・6の倍数:一の位の数字が偶数で,各位の数字の和が3の倍数 X Zak ・8の倍数:下3桁の数が8の倍数 9の倍数:各位の数字の和が9の倍数 10の倍数:一の位の数字が 0 30 (2)から6までの数字から3つを選んだとき,その和が3の倍数にな る組合せは, (1, 2, 3), (1, 2, 6), (1, 3, 5), (1, 5, 6), (2, 3, 4), (2, 4, 6), (3,4,5),(4,5,6)の8通り. そのおのおのに対して並べ方が3! 通りずつ. .. 8×3!=48 (個) 右になるほど大きく なるように拾ってい く(規則性をもって) (3)から⑥までの数字から2つを選んで2桁の整数をつくるとき, これが4の倍数になるのは, 12,16,24,32,36,52,5664の8通り。 6-2 そのおのおのに対して,その左端におくことができる数は4通りずつ。 .. 8×4=32 (個) (4)(2)の8通りのおのおのについて,一の位が偶数になるように並べる 方法を考えればよい. (1,2,3)(1,5,6,3,4,5) は偶数が1つしかないので、そ れぞれ2個ずつ. (1,2,6,2,3,4,4,5,6) は偶数が2つあるので,それぞ れ, 2×2×1=4(個) ずつ. (2, 4, 6) はすべて偶数なので, 3!=6(個). よって, 2×3+4×3+6=24 (個) (1)一の位が2, 4, ⑥のどれかになるので,まず,一の位から考えます . ポイント 整数が2の倍数, 3の倍数, 4の倍数, 5の倍数, (条件のついた場所を優先) (2)3の倍数になるような3つの数の組が1つ決まると並べ方は3!通りあり ます. (3) 2桁の数で4の倍数であるものを1つ決めて、その左端にもう1つ数字を おくと考えます. 6の倍数,8の倍数, 9の倍数, 10の倍数 になる条件は覚えておく 解答 (1) 一の位の数字の選び方は2, 4, 6の3通りで,このおのおのに対 して百の位、十の位の数字の選び方は sP2=5×4=20 (通り) 演習問題 96 6個の数 0 1 2 3 4 5 の中から4個の異なる数字を選び, そ れらを並べて4桁の整数をつくるとき,25の倍数は何個できるか、

回答募集中 回答数: 0
数学 高校生

130. このような具体例(図を書いてみる等)で規則性を考えて解く問題において、どういう感じで記述するのがいいのでしょうか??

582 ①① 基本例題 130 図形と漸化式 (1) ・・・ 領域の個数 平面上に,どの3本の直線も1点を共有しない, n本の直線がある。 次の場合、 平面が直線によって分けられる領域の個数をnで表せ。 (1) どの2本の直線も平行でないとき。 (2) (2) 本の直線の中に, 2本だけ平行なものがあるとき。 指針 (1) n3の場合について,図をかいて考えてみよう。 ヨコ 解答 an (1) n本の直線で平面が α 個の領域に分けられているとする。 (n+1) 本目の直線を引くと,その直線は他のn本の直線で (n+1) 個の線分または半直線に分けられ、 領域は (n+1) 個 だけ増加する。 ゆえに An+1=An+n+1 ¿+(T+5√]$¬1+ よって an+1-an=n+1 また a₁=2 数列{an}の階差数列の一般項はn+1であるから, n ≧2の とき これはn=1のときも成り立つ。 201 ゆえに, 求める領域の個数は __n²+n+2 2 (図のD1~D』)であるが,ここで直線ls を引くと,ls は 42=4 l1,l2 と2点で交わり、この2つの交点で ls は3個の線分また は半直線に分けられ, 領域は3個 (図のDs, Ds, D7) 増加する。 よって as=az+3 2.2-0 PARTY 同様に, n番目と(n+1) 番目の関係に注目して考える。 n本の直線によって α 個の領域に分けられているとき, (n+1) 本目の直線を引くと 域は何個増えるかを考え, 漸化式を作る。 2-14 (2) (n-1) 本の直線が (1) の条件を満たすとき, n本目の直線はどれか1本と平行になる から (n-2) 個の点で交わり, (n-1) 個の領域が加わる。 n-1 an=2+Σ(k+1)=- k=1 n²+n+2 2 (2) 平行な2直線のうちの1本をeとすると,l を除く (n-1) 本は (1) の条件を満たすから,この (n-1) 本の直線で分けら れる領域の個数は (1) から (8+.0) an-1 更に,直線ℓを引くと,ℓはこれと平行な1本の直線以外の 個の点で交わり の領域が増え よって、求める領域の個数は an-1+(n-1)=- (n−1)²+(n−1)+2 2 n²+n 2 +(n-1)=- n=3 Ilz D₂ [類 滋賀大] D3 Do D [=8+₁0 D₁ k=1 Σ(k+1)="Ek+ Z1 =(n−1)n+n-1 D2 a3=7 人 一 (n+1) 番目の直線は n本 その直線のどれとも平行でな いから,交点はn個。 (1) の結果を利用。 l DA αn-1 は, (1) の annの 代わりにn-1 とおく。 e

回答募集中 回答数: 0
数学 高校生

72番です 解説だけではさっぱり分からないのでどなたかより詳しく教えてください🙏

# 一般社回ってる! 2 70 数列 り返しの規則性がある数列 繰り返しの切り替わりの場所に仕切りを」 入れて、群に分けてみる。 (1) ²が初めて現れるのは、第群の未項で ある。 (2) 第100が何の第何項かを求める。 この数列を、次のように群が鯛の数を含 むように分ける。 O 132 第1章 数列 68 自然数の列を、次のように1個 2個 4個 8個 2個 の群に 分ける。 3/1 11.41.4.91.4.9.16 土 1.4. 9. 16.25/1, 12,3/4, 5, 6, 7 8, 9, 10, 11, 12, 13, 14, 15 16, ··・・・・ (1) 第ヶ群の最初の自然数を求めよ。 600は第何群の第何項か。 第ヶ群にあるすべての自然数の和を求めよ。 がある。 69 数列 1. 1, 4, 1,4, 9, 1, 4, 9, 16, 1, 4, 9, 16, 25, 1, ······ ナ ”を自然数としたとき、自然数がが初めて現れるのは第何項か。 (2) 第100項を求めよ。 (3) 初項から第100項までの和を求めよ。 項から第 800頃までの和を求めよ。 9 #14+12 1, 2, 3, 4, 5 13, 1. 21. 2, 3215. 23.3.4 2 3 1121 2 2'3'3'4'45'5'5' 1 5'6'6' 4 数列 1,2,3,… n において,次の積の和を求めよ。 異なる2つの項の積の和(n≧2) 互いに隣り合わない異なる2つの項の積の和(n≧3) において、初 OctXT²) (143) h=< n²t A=4 2 11 35 70 分母が同じ うに分ける。 (X+①(x²(x) 発展問題 □72 (x+1)(x+2)(x+3)(x+n) の展開式において,次の係数を求めよ。 (+2) 24+11 x-1の係数 (2) x 2の係数 ( n ≧2) セント 69 次のような群に分ける。 11,4|1,4,9|1,4, 9, 161, 4, 9, 16, 25 1, 70 分母が同じ分数が同じ群となるように分ける。 71 (1) (a+b+c+)² = (a² + b ² + c²+)+2(ab+ac++bc+) 318 318 第1群からか! 1+2+4 412 23' 3 12 (x²+x²+4/ 例題

回答募集中 回答数: 0
数学 高校生

下から3行目のn=k+1 はどこから出てきたのかわかりません。教えていただけると助かります!

例例題 274 2つの等差数列の共通の 初項1,公差2の等差数列{an} と初項 1, 公差3の等差数列{bn}がある。 (1) 数列{an}と{bn}の一般項をそれぞれ求めよ。 思考プロセス (2) 数列{an} と {bn}に共通して含まれる項を小さい方から順に並べてで きる数列{cn}の一般項を求めよ。 3176 H (2) 未知のものを文字でおく {an}の第1項と{bn}の第m項が等しいとする。 ⇒21-1=3m-2 (L,mは自然数)す 1 (1) 数列 {an}の一般項は an=1+(n-1) 2=2n-1 >21-3m=-1の自然数解 BAINS 1次不定方程式 Action» 等差数列{an},{bn}の共通項は,a=bm として不定方程式を解け 脂質問を募ることの門商法 数列{bn}の一般項は a S bn=1+(n-1)・3=3n-2 (★★) 309 (2) {an}の第1項と{bn}の第m項が等しいとすると, 21-1=3m-2より 21-3m=-1 l=1,m=1 はこれを満たすから 40 2(1-1)=3(m-1) ・① 2と3は互いに素であるから, 1-1は3の倍数である。 よって, l1 = 3k(kは整数)とおくと l=3k+1 これを①に代入して整理すると m=2k+1 lm は自然数より k = 0, 1, 2, nは自然数より,n=k+1 とおくと k=n-1 ゆえに, l=3n-2 (n=1,2,3, ・・・) であるから Cn = d3n-2= -2=2(3n-2)-1=6n-5 〔別解) A IS 2つの等差数列の項を書き並べると {an}: 1, 3,5,7, 9, 11, 13,15, 17, 19, です SSS - ST {6}: 1,4,7, 10, 13, 16, 19, よって、求める数列{cm} は,初項1の等差数列となる。 公差は2つの数列の公差2,3の最小公倍数6である から Cn=1+(n-1)・6=6n-5 一 a=bm 165303 21-3m=-1 -) 2・1-3・1 = -1 2(1-1)-3(m-1)=0 [*+-+*+/ 3k+1≧1 より ≧0 【2k+1≧1 より ≧0 AREN ■nとんの対応は,不定 方程式 ① を解くときに用 整数1, m の組によっ 変わる。 具体的に考える {an},{bn} を具体的に書 き出して、規則性を見つ ける {cm}:1,7,13, 19, EVAYER 3ªð

回答募集中 回答数: 0
数学 高校生

どういうことですか? 問題の概要を教えてください。

考え方 SO 解 3 漸化式と数学的帰納法 545 例題308 数列と図形 (1) *** 平面上にどの2つをとっても互いに2点で交わり,また,どの3つを とっても同一の点で交わらないn個の円がある.これらの円によって平 面は何個の部分に分けられるか. その個数 an をnの式で表せ。食 n個の円がある状態から, (n+1) 個目の円をつけ加えたとき,もとのn個の円と何 ヶ所で交わるかを考える 円の個数 [5₁_n=1 n=2 練習 308 2 ISHOKIS 2 31 2 4 k=1 (2)より。 =n²-n+2 これは,n=1のときも成り立つ。 よって, an=n²on+2 n=3 2 +2 6 3 7 2 4 5 割される.これらの弧に対して, それぞれ新たな平面の部 分が1個ずつ増えるので,平面の部分は 2n個増える . したがって, an+1=an+2n *b+8x1" (1). d=2-2 n≧2のとき, an= a₁ +2k=2+2.(n-1)n 4 +4 8 HE 7 + n=4 2 14 増えた交点の個数 6 増えた平面の数 +6 平面が分けられる数 20140AH 80 14 実験より,(増えた交点の個数)=(増えた平面の部分の数) であることがわかる . 4. 10 12 n=1のとき, a₁=2 n個の円があるとき, (n+1) 個目の円を新たにかくと, この円はn個の円とそ れぞれ2回ずつ交わる. すなわち、他の円と2n個の交点を持つので, (n+1) 個目の円は2個の弧に分 -3 9 13 n=3のとき, 4つの交点に対して, 4つの弧 1) A 4つの新たな平面 Focus くり返しによる図形の問題については,まず図をかいて規則性をつかもう とくに番目と(n+1) 番目の関係を式で示す 注 この問題を, 平面を球面にして, 「球面上に,どの3つをとっても1点で交わらな n個の大円 (半径が球の半径に等しい円) がある.これらn個の大円は球面上を いくつの部分に分けるか, その個数αをnの式で表せ.」 という問題も全く同じ考 え方で, an=n²-n+2 であることがわかる. 三角形ABC の各頂点と, それぞれの対辺上の両端以外の異なる100 個の点 を直線で結ぶと, これら300本の直線によって三角形ABCの内部はいくつ の部分に分けられるか。 ただし、どの3直線も三角形ABC内の1点で交わ (名古屋市立大) 数 列

回答募集中 回答数: 0
1/5