数学
高校生

130.
このような具体例(図を書いてみる等)で規則性を考えて解く問題において、どういう感じで記述するのがいいのでしょうか??

582 ①① 基本例題 130 図形と漸化式 (1) ・・・ 領域の個数 平面上に,どの3本の直線も1点を共有しない, n本の直線がある。 次の場合、 平面が直線によって分けられる領域の個数をnで表せ。 (1) どの2本の直線も平行でないとき。 (2) (2) 本の直線の中に, 2本だけ平行なものがあるとき。 指針 (1) n3の場合について,図をかいて考えてみよう。 ヨコ 解答 an (1) n本の直線で平面が α 個の領域に分けられているとする。 (n+1) 本目の直線を引くと,その直線は他のn本の直線で (n+1) 個の線分または半直線に分けられ、 領域は (n+1) 個 だけ増加する。 ゆえに An+1=An+n+1 ¿+(T+5√]$¬1+ よって an+1-an=n+1 また a₁=2 数列{an}の階差数列の一般項はn+1であるから, n ≧2の とき これはn=1のときも成り立つ。 201 ゆえに, 求める領域の個数は __n²+n+2 2 (図のD1~D』)であるが,ここで直線ls を引くと,ls は 42=4 l1,l2 と2点で交わり、この2つの交点で ls は3個の線分また は半直線に分けられ, 領域は3個 (図のDs, Ds, D7) 増加する。 よって as=az+3 2.2-0 PARTY 同様に, n番目と(n+1) 番目の関係に注目して考える。 n本の直線によって α 個の領域に分けられているとき, (n+1) 本目の直線を引くと 域は何個増えるかを考え, 漸化式を作る。 2-14 (2) (n-1) 本の直線が (1) の条件を満たすとき, n本目の直線はどれか1本と平行になる から (n-2) 個の点で交わり, (n-1) 個の領域が加わる。 n-1 an=2+Σ(k+1)=- k=1 n²+n+2 2 (2) 平行な2直線のうちの1本をeとすると,l を除く (n-1) 本は (1) の条件を満たすから,この (n-1) 本の直線で分けら れる領域の個数は (1) から (8+.0) an-1 更に,直線ℓを引くと,ℓはこれと平行な1本の直線以外の 個の点で交わり の領域が増え よって、求める領域の個数は an-1+(n-1)=- (n−1)²+(n−1)+2 2 n²+n 2 +(n-1)=- n=3 Ilz D₂ [類 滋賀大] D3 Do D [=8+₁0 D₁ k=1 Σ(k+1)="Ek+ Z1 =(n−1)n+n-1 D2 a3=7 人 一 (n+1) 番目の直線は n本 その直線のどれとも平行でな いから,交点はn個。 (1) の結果を利用。 l DA αn-1 は, (1) の annの 代わりにn-1 とおく。 e

回答

まだ回答がありません。

疑問は解決しましたか?