数学
高校生

どういうことですか?
問題の概要を教えてください。

考え方 SO 解 3 漸化式と数学的帰納法 545 例題308 数列と図形 (1) *** 平面上にどの2つをとっても互いに2点で交わり,また,どの3つを とっても同一の点で交わらないn個の円がある.これらの円によって平 面は何個の部分に分けられるか. その個数 an をnの式で表せ。食 n個の円がある状態から, (n+1) 個目の円をつけ加えたとき,もとのn個の円と何 ヶ所で交わるかを考える 円の個数 [5₁_n=1 n=2 練習 308 2 ISHOKIS 2 31 2 4 k=1 (2)より。 =n²-n+2 これは,n=1のときも成り立つ。 よって, an=n²on+2 n=3 2 +2 6 3 7 2 4 5 割される.これらの弧に対して, それぞれ新たな平面の部 分が1個ずつ増えるので,平面の部分は 2n個増える . したがって, an+1=an+2n *b+8x1" (1). d=2-2 n≧2のとき, an= a₁ +2k=2+2.(n-1)n 4 +4 8 HE 7 + n=4 2 14 増えた交点の個数 6 増えた平面の数 +6 平面が分けられる数 20140AH 80 14 実験より,(増えた交点の個数)=(増えた平面の部分の数) であることがわかる . 4. 10 12 n=1のとき, a₁=2 n個の円があるとき, (n+1) 個目の円を新たにかくと, この円はn個の円とそ れぞれ2回ずつ交わる. すなわち、他の円と2n個の交点を持つので, (n+1) 個目の円は2個の弧に分 -3 9 13 n=3のとき, 4つの交点に対して, 4つの弧 1) A 4つの新たな平面 Focus くり返しによる図形の問題については,まず図をかいて規則性をつかもう とくに番目と(n+1) 番目の関係を式で示す 注 この問題を, 平面を球面にして, 「球面上に,どの3つをとっても1点で交わらな n個の大円 (半径が球の半径に等しい円) がある.これらn個の大円は球面上を いくつの部分に分けるか, その個数αをnの式で表せ.」 という問題も全く同じ考 え方で, an=n²-n+2 であることがわかる. 三角形ABC の各頂点と, それぞれの対辺上の両端以外の異なる100 個の点 を直線で結ぶと, これら300本の直線によって三角形ABCの内部はいくつ の部分に分けられるか。 ただし、どの3直線も三角形ABC内の1点で交わ (名古屋市立大) 数 列

回答

まだ回答がありません。

疑問は解決しましたか?