学年

教科

質問の種類

数学 高校生

青い線の移行って何でこうなるんでしたっけ?解説お願いします🙇‍♂️

引 69 対数の計算(I) 次の各式の値を計算せよ. 9 (1) log: 10+loga-log: 3 2 5 3 1 8 4 9 (2) 2log2 12- log2510g2√3 (3)10g102)+(10g105) +10g105・10g10 8 精講 対数は,1とか2とか普通に使っている数字を「10gar」の形で表す 新しい数の表現方法です. なぜ、このようなワケのわからない表し方をする必要があるのかと 思う人もいるでしょうが,まずは慣れることです. そのためには,ある程度の 量をこなすことが必要です. 何度も何度も間違いながら演習をくりかえし, 自 然に使えるようになるまでがんばることです。 <基本性質> a>0, a≠1, x>0 のとき I. y=logax x=a" (定義) II. 10gaa=1, 10ga1=0 注 y=logaxにおいて, a を底, x を真数 と呼びます. <計算公式〉 > 0, a≠1, M > 0, N> 0 のとき, I. logaM+logaN=logaMN II. loga M-logaN=loga M N III. loga M=ploga M (p: 実数) =210gz223-11 (log:8-log29) 1210g23 -- =2(21og22+logz3)-(3-21ogz3) -log23 =4+210ga3-4+1/loga3-1/2l05.3 -4-3-13 注 このように, 真数を素数の積の形で表し, 計算 するところがコツです. (3) 10g102=a, 10g105 = 6 とおくと 与式 = a +6+3ab =(a+b)-3ab(a+b)+3ab ここで, a+b=10g102+10g105=1 だから 与式=1-3ab+3ab=1 注 対数計算には, 積に関する公式がありません. たとえば, 10g103 10g 10 2 はこれ以上簡単になりま+ ポイント 対数計算は, ① 底をそろえて ② 真数を小さく 次の公式を用いる I. logaM+10ga N = logaMN M II. 10ga M-10gaN=10ga N III. loga M=ploga M 解答 109 109 109 3 5 (1) log2- +log21 --log2 =log: (10×3+) 5 ÷ = log(1x1x2/12)=log21=0 3-5 23 注 底がそろっていないときは,次の70で学びます. 底はすでそろって いる 公式Ⅰ Ⅱ 基本性質Ⅱ 演習問題 69 1 8 (2) 2log2 12-- -log2 -5log2√3 このままでは計算公 9 式 I, II は使えない 次の各式の値を計算せよ. (1)(10g102)+(log105)(10g104)+(log105)2 (2)log(√2+√3-√2-√3 )

解決済み 回答数: 1
数学 高校生

24. (1)と(2)は同じ問題のようで、場合分けが必要ない問題と必要な問題ですが、問いを見た時に場合分けの有無が分かる方法などはあるのでしょうか?? 写真2枚目のような解き方をして間違えました。 また、[2]のこれはabc≠0を満たす全ての実数a,b,cにおいて成り立つ、... 続きを読む

44 基本例題 24 比例式と式の値 (1) x+y x+y_y+z z+x 5 7 (2) b+c a 解答 (1) = 6 cta b よって 指針 条件の式は比例式であるから, (1) x+y H5T 6 y+z = ...... 比例式は=とおくの方針で進める とおくと x+y=5k, y+z=6k,z+x=7k (A) これらの左辺は x,y,zが循環した形の式であるから、Aの辺々を加えて、 すると, x+y+z をk で表すことができる。 右下の 検討 参照。 (2) も同様。 a+b C c+a b x+y=5k ① +② +③ から 2(x+y+z)=18k したがって x+y+z=9k -②, ④-③, ④-① から,それぞれ x=3k, y = 2k, z=4k xy+yz+zx x2+y2+22 (2) 分母は0でないから b+c a+b a C dat xy+yz+zx x2+y2+22 のとき、この式の値を求めよ。 ...... (0) のとき z+x=kとおくと,k=0 で 7 ①,y+z=6k - ...... ②,z+x=7k ①,c+a=bk 6k2 +8k2+12k2 (3k)²+(2k)²+(4k)² 26k2 26 29k2 29 = abc≠0 (a + b)(b んとおくと ...... 44 b+c=ak ① ① +② +③ から よって (a+b+c) (k-2)=0 ゆえに a+b+c=0 または k=2 [1] a+b+c=0のとき b+c=-a b+c a 2(a+b+c)=(a+b+c)k id=p ②, a+b=ck ED)Ed 4 db- ...... (検討」 ①~③の左辺は、 循環形 (xy Z 次の式が得られ b+いる。循環形の式 ...... ...... (3) の値を求めよ. (3) -a= よって k= -1 a [2] k=2のとき, ①-② から a=6 ②-③ から b=c よって, a=b=cが得られ,これは abc≠0を満たすすべ ての実数a,b,c について成り立つ。 [1], [2] から, 求める式の値は -1, 2 加えたり,引いた 処理しやすくなる ho-do <x:y:z=3:2 3・2+2.4+4・ 32 +22+42 と計算すること <abc≠0⇔a≠0 6=0 か 0の可能性がある 両辺をa+b+ci はいけない。 (*)k=2のとき ① 5 b+c=2a, c この2式の辺々を b-a=2(a-t よってa=b (分母) 0の確認。

未解決 回答数: 1
1/2