学年

教科

質問の種類

数学 高校生

(2)の解き方が分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

基本 例題 15 塗り分け問題 (1) 赤、青、黄、白の4色の絵の具で塗り分けるとき 右の図で, A, B, C, D の境目がはっきりするように, すべての部分の色が異なる場合は何通りあるか。 (4) 同じ色を2回使ってもよいが、隣り合う部分は異な 色とする場合は何通りあるか。 CHART & SOLUTION 00000 A C D B 塗り分け問題 特別な領域 (多くの領域と隣り合う, 同色可) に着目 (2)最も多くの領域と隣り合うCに着目し, C→A→B→Dの順に塗っていくことを考える。 (1) A, B, C, D の文字を1列に並べる順列の数と同じ。 答 (1) 塗り分け方の数は, 異なる4個のものを1列に並べる方 法の数に等しいから 4!=24 (通り) (2) C→A→B→Dの順に塗る。 C,A,Bは異なる色で塗るから, C→A→Bの塗り方は 4P3=24 (通り) DはCとしか隣り合わないから, C→A→B→D 4 × 3 × 2 × 3 Cの色以外の3通りの塗り方がある。パー! よって, 塗り分ける方法は全部で 24×3=72 (通り) a- Cの色を除く 2 CとAの色を除く 3 Cの色を除く ← A B C D に異なる4色を 並べる方法の数に等しい。 A, B, D の3つ Cは, の領域と隣り合う。 A とBは、2つの領域, D は1つの領域と隣り合 う。 INFORMATION (2)の別解 塗り分けに使えるのは4色。 Cは3つの領域と隣り合うから 4色と3色で塗り分け る2通りについて考えてみよう。 [1] 4色の場合 (1) から 4!=24 (通り) 2] 3色の組合せは,どの1色を除くかを考えて 4通り その3色の組に対して, C→A→Bの塗り方は 3!=6(通り) SE DはCと異なる色の2通りで塗り分けられる。 よって、3色の塗り分け方は [2]から 24140 4×6×2=48 (通り)

解決済み 回答数: 1
数学 高校生

(1)と(2)を教えてください。 (2)は(1)の式を書くことが出来なかったので、サッカーの絵を見て数えて答えたため、実際の解き方が分かりません。 数学があまり得意ではないため、分かりやすい解説をお願い致します。

けんたろう:このサッカーボールは正五角形と正六角形でできた多面体だね。 一体このサッカーボー ルには何個の正五角形と正六角形があるんだろう。 数えるのには少し手間がかかるね。 ひさのり:それじゃあ, 正五角形と正六角形の個数をそれぞれ x, y とすれば, サッカーボール の面の数 F は F = (ア) ①と表せる。 また, サッカーボールの頂点の数 V は, ②と表すことができるね。 ... 正五角形に注目し, æのみを用いてV= (イ) けんたろう:であれば, サッカーボールの辺の数 E も考えたいね。 正五角形の1つの頂点には3つの 辺が集まっているからE= (イ) ×3と表せられる? ひさのり:それだと重複して数えちゃってるよ。 適当な数で割って,E= (ウ) ③と表すのが 正しいね。 ① ② ③をオイラーの多面体定理に代入して整理すれば (エ) x-(*) y=-4... ④ けんたろう: オイラーの多面体定理ってなんだっけ?? それよりも、 ④の式だけじゃ答えにたどり着か ないよ。もう1本,とyの関係式が欲しいよ。 ひさのり: オイラーの多面体定理はね, 覚えておかないとね。 それじゃあ関係式をもう1本出そう。 正六角形については1つの正五角形のまわりに5つあるから, 合計 5 だね。 だけどこの 場合、正六角形 (カ) 回数えているからy=(キ) ⑤ けんたろう: ④と⑤から正五角形と正六角形の個数がわかるね。 (1) (ア) 2 (キ)に当てはまる適当な数および文字を答えよ。 (2) サッカーボールの正五角形と正六角形の個数をそれぞれ求めよ。

解決済み 回答数: 1
1/30