学年

教科

質問の種類

数学 高校生

この、速度の求め方はなぜ微分を使うんですか? すみません、全然分からなくて💦

** a 入する。 では, 無線も (2) B 201 ある。 運動と微分 式への応用 **** 時刻における点Pの速度および、点Pが運動の向きを変 える時刻を求めよ. 半径1cmの球形の風船があり、 空気を入れはじめてから、半径に 0.5cm/sの割合で増加しているという.4秒後の体積の増加する。 度を求めよ. 「刻における座標s が s=f(t) のとき 時刻 方 (1) 速度に関する問題である。 直線上の動点Pの時 ds dt における速度はv=f'(t) 速さは v また、運動の向きが変わる速度の符号が変わる (2)変化率に関する問題である。 変化する量Vが時刻tの関数で、V=f(t) のとき dV=f'(t) (時刻 t における)変化率 dt 球の体積Vをtを用いて表すとよい。 (1)時刻 t における点Pの速度を”とすると、このと きの座標は,s=-6f2+9t-2 であるから, ds S=3t-12t+9=3(t-1)(t-3) v=- dt よって、 速度は3t-12t+9 時間 位置 速度 tについて微分する. 点Pが運動の向きを変え るのは、速度vの符号が変 わるときであるから,右の 表より, t=1,3 t 1 3 v 0 0 (2) t秒後の半径をrcm, 体積をVcm とすると, r=1+0.5t より 4 V=1/22/12(1+0.5t) = (21) dV πC したがって, dt 6 dV t=4 のとき, dt よって、増加する速度は, 6xxan 3(2+1)²+1=72 (2+1)² (2+4)=18 18cm3/s 球の体積V=132 最初の半径が1cmで 0.5cm/sの割合で増加 1+0.5t =1+1/21=1/2(2+1) [{f(x)}")' ={f(x)}^-'.f'(x) 第6章 Focus 時刻 t とともに変化する位置や量は、時刻 t で微分して扱う 練習 201 ** (1) 直線上の動点Pの時刻における座標 s は, s =f-9t+15t-6である。 時刻における点Pの速度および、点Pが運動の向きを変える時刻を求め 主面積の増加する速度を求めよ.

未解決 回答数: 1
数学 高校生

この問題の(ⅰ)はa=0の時をなぜ確かめているんですか?

368 第6章 微 Think 例題 198 実数解の個数(2) **** 3次方程式-3a'x +40=0が異なる3つの実数解をもつとする。栄 数αの値の範囲を求めよ. 114 考え方 例題 197 (p.367) のように定数を分離しにくい。 このような場合は,次のように3次 数のグラフとx軸の位置関係を考える。 3次方程式 f(x)=0が異なる3つの実数解をもつ 3次関数においては、 y=f(x) のグラフがx軸と3点で交わる (極大値)>0 かつ (極小値)<0 (極大値)×(極小値) < 0 (極大値)> (極小値 ) 解答) f(x)=x-3ax+4a とおくと f'(x)=3x²-3a²=3(x+a)(x-a)...... ① 方程式 f(x) =0 が異なる3つの実数解をもつ条件は、 y=f(x) のグラフがx軸と3点で交わること つまり、(極大値)×(極小値) <0 となることである. (i) ①より、f'(x)=0 のとき, a>0のとき、 y=f(x) A f(a)f(B) f(x)が極値をもっ f(x)=0が異なる? つの実数解をもっ f'(x)=0の 判別式) > 0 x=-a,a x -a 増減表は右のよう f'(x) + 0- 20 a (p.353 参照) + 直接, 増減表を書いて になる. f(x) 極大 極小 極値を調べたが、 a0 のとき, X a -a 増減表は右のよう になる。 f'(x) + f(x) 0 20 (+) 極大 極小 a=0 のとき,f(x)=xより,f(x)=0 の解は x=0 (3重解)となり不適 (ii) f(-a)xf(a)=(2a3+4a)(-2a3+4a) =-4a² (a²+2)(a2-2)<0 (i)より, a=0 であるから,a>0,d²+2>0より, a²-2>0 これより、 (a+√2) (a_√2)>0 a<-√2√2<a よって、求める αの値の範囲は, a<-√2√2<a 3次方程式(x)=0が異なる3つの実数解をもつ y=f(x)のグラフがx軸と3点で交わる (極大値)>0かつ (極小値) <0 (極大値) X (極小値) < 0 f'(x) =0 の判別式を 使ってもよい。 判別式をDとすると D=-4-3(-3a²) =36a2>0 より a<0, 0<a (a=0) となる. Focus 注> 例題198 で (1) f(x) が極値をもつ (Ⅱ) (極大値)×(極小値) <0 満たさないと (極値

未解決 回答数: 1
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 高校生

(1)を部分分数分解ではなく、x=2sinθと置いたのですが、それだとダメなんでしょうか?

206 第6章 積分法 基礎問 113 区分求積法 定積分を用いて,次の極限値を求めよ. n2 122 n² + (1) lim n4n2 12 4n2-22 ++・・・+ 4n2 (2) lim +k (2) lim dx 1 = (2+2) 189 207 =1/-10g(2x)+10g(2+1)=1102/11083 1 nk=n+1k →頭に「一」 がつく理由は, 86 ポイント参照。 1 27 n -=lim n→∞nk=n+1k =lim 11 n―00 n k=n+1 k n --log-log2 精講 limΣの形をした極限値を求めるとき, Σ計算が実行できればよい のですが、そうでないときでもある特殊な形をしていれば極限値を k 公式によれば, n 積分の範囲が1→2となる理由を考えてみましょう。区分求積の 求めることができます. →とかわっています. だから, n→∞としたと k それが 「区分求積」といわれる考え方で,その特 殊な形とは YA きの n y=f(x), の範囲がxの範囲ということになります。 n+1sks2n n // ( n+1 nn において, lim 2n -=1, lim lim nk=1" (円) n→∞ n n→∞ n -=2 であることより, 1≦x≦2とな ります。 です. 右図で斜線部分の長方形の面積は1/12 (1) で表 12 nnk-1' 3x n k ポイント せます。 lim 1.2m)=f(x) dr n→∞nk=1 dx よって、21(h)は,図のすべての長方形の総和です。ここで,n(分割 x=1で囲まれた面積に近づくと考えられます。 以上のことから, lim 1 ½ ½ ƒ ( h² ) = f f ( x ) d x n→00 n k=1 ということがわかります. 数) を多くすると曲線より上側にはみでている部分はどんどん小さくなります。 そして最終的にはy=f(x), x軸, 2直線 x = 0, 参考 分割数を倍にすると幅が半 分になるので,この部分だ け小さくなる y=f(x) a b-a bx a+k. n x lim b-a n 12 00 n k=1 n f(a+k.ba) = f(x)dr 区分求積の公式の一般形は下のような形 ですが, 大学入試では上の形でできない ものは出題数が少なく、出題されてもか なりの上位校に限られていますので、ポイントの 形で使えるようになれば十分です. y=f(x) b-a n - a fla+k⋅ b - a). b-a 解 (1)(与式)=lim7_12 non k=1 4n-k² lim 12 1 n→∞nk=1 (k' 4- An 演習問題 113 Elim n+2k の値を求めよ. nwk=1n2+nk+k2 第6章

未解決 回答数: 1
数学 高校生

【2】からよく分かりません。また、【3】でどうしたらS🟰の式がこのようになるのか教えて頂きたいです。

172 第6章 分 間 110 面積(M) 放物線y=a12a+2 (0<</2/2) ………① を考える。 精講 (1) 放物線 ①がαの値にかかわらず通る定点を求めよ。 ...... (2) 放物線①と円+y2=16 ② の交点のy座標を求めよ。 (3)a=1/2 のとき,放物線 ①と円 ② で囲まれる部分のうち、放物 線の上側にある部分の面積Sを求めよ. (1) 定数α を含んだ方程式の表す曲線が, αの値にかかわらず通る 定点を求めるときは,式を α について整理して, a についての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが,yを消去すると の4次方程式になるので, x座標が必要でも,まずxを消去してyの2次 方程式にして解きます。が、 E (3) 面積を求めるとき,境界線に円弧が含まれていると,扇形の面積を求める ことになるので,中心角を求めなければなりません.だから,中心Oと交点 を結んだ線を引く必要があります。もちろん,境界線に放物線が含まれるの で,定積分も必要になります. (2) 解答 し (1)y=ax2-12a+2 より a(x²-12)-(y-2)=0 これが任意のαについて成りたつので 2-12=0 ly-2=0 :.x=±2√3,y=2 よって, ①がαの値にかかわらず通る定点は (±2√3, 2) |y=ax²-12a+2... ① x²+ y²=16 ......2 ②より,㎡=16-y^だから,①に代入して αについて整理

回答募集中 回答数: 0
数学 高校生

高次方程式に関して、紫で囲ったところについての質問です。まず、各項とも3次以上であると書かれているのですが、項は一つしかないと思います。どれらの項のことを各項と言っているのですか?また2次以下の項の係数を比較してとあるのですが、三次以上の項を無視できるのは、②の式がt(x)... 続きを読む

116 第2章 高次方程式 Think 例題 54 剰余の定理(2) [考え方 解答 **** (1)nを3以上の自然数とする.x" -1 を (x-1)3で割ったときの余り を求めよ. (2)x2+x15 +1 を x+1で割ったときの余りを求めよ. (1)x1=(x-1) Q(x)+ax²+bx+c このままでは何もできないので,x-1 が式変形でき ないか考える(x-1) に着目して, x-1 =t とおく x1 =t とおくと, 二項定理が利用できる. (二項定理については, p.21参照) (2)x=iで x2+1=0 となる. 実数係数の多項式の割り算での余りは実数係数の多 式である。 (1)3次式(x-1)で割ったときの商をQ(x) とすると,余りは 2次以下の多項式であるから、余りはax+bx+c とおける よって、 (t+1)-1=fQ(t+1)+α(t+1)+6(t+1)+c ...... ② 3次式で割るの で、余りは2次 以下の多項 解 Comme 1の の解で つまり この とす x-1 =t とおくと, x=t+1 より ①は, x-1=(x-1)2Q(x)+ax²+bx+c ②の左辺に二項定理を利用すると, (左辺)=,Cat+mCt' "Cat+„Caf'+nCit+"Co-1 =,Cat*+,C, "'++,Cf+n(n-1)t 2+nt ③ 2 C22 C=n n(n-1) n Co=1 また、②の(右辺)=Q(++1)+of+ (2a+b)t+a+b+c 多項式・Q(t+1)は各項とも3次以上である. ③④の2次以下の項の係数を比較して, ④4) とな a n(n-1) a= 2a+b=n,a+b+c=0 2 これらから a=- _n(n-1) b=-(n-2n),c=- n2-3n 余りは2次以 なので2次以下 の項のみに着目 する。 れる d 2 2 練習 よって, 求める余りは, n(n-1)x-(n²-2n)x+ 2 n²-3n 2 (2)2次式x+1で割ったときの商をQ(x), 余りをax+bとおく . x2 + x15+1=(x2+1)Q(x)+ax + b(a,bは実数) が成り立つ. これは恒等式であるから,両辺に x=i を代入すると, 1+1+1=(i+1)Q(i) + ai + b ... ① i=-1,=(i) =1, i=(i).i=-i より ① は, 2-i=b+ai となる. a b は実数であるから, よって、求める余りは, 注)微分法(第6章) を学習すると *** (6) *****, 54 **** a=-1,b=2 x+2 余りは1次以下 の多項式 =√-1 複素数の相等よ り 辺を微分した式も恒等式であることから,a,b,cの値を容易に求められる. xの恒等式 x-1=(x-1)Q(x)+ax²+bx+cの両 (1)を2以上の自然数とする.x" を (x-2)2で割ったときの余りを求めよ。 (2)2x'+x+1 を (x+1)(x-1)で割ったときの余りを求めよ. を

回答募集中 回答数: 0
1/20