学年

教科

質問の種類

数学 高校生

次の青線の移行がよくわからないのですがどなたか解説お願いします🙇‍♂️

(1)im/([1]+[1]) を求めよ。 ただし, [x] は x を超えない最大の整 数を表すものとする。 2" ≤2. n! n-2 2" (2)3以上の自然数nに対して 2-(2) を示し, lim を求めよ。 ガウス記号 [x]や階乗n! を含み, 直接考えにくい。 non! Action》 直接求めにくい極限値は、はさみうちの原理を用いよ 風のプロセス (1)(+6) |をつくりたい。 定義に戻る ・極限値が一致する 2式 (2)逆向きに考える 結論 2.2.2.2 1・2・3・4・・ 個 ..... 個 2.2 (n-1)n [x]≦x<[x]+1 より n-1個 x-1<[x]≦x 2・2・2・・・・・2・2 を示せばよい。 3・3·····3・3 n-2個 3・4・・...(n-1)n ≧3・3・・・・・3・3 を示せばよい。 解 (1) x-1<[x] ≦ x であるから [x]の定義より [x]≦x<[x]+1 ①+② より 5 n- ·2< <[4] + [1/8] n 1< 2 [#] n n n n .. 1, 1< 2 3 ① ② の辺々を加えて, その辺々をn (0) で割ると 5 2 17 > n n 1/([1] n n + ]) ≤ 5 6 5 2 ここで, lim = n→∞ 6 n 5 6 であるから, はさみうちの n n 原理より lim (2)n≧3のとき + = n→∞ n 2 3 n-2個 2" 2・2・2・2・・・・ n! 1・2・3・4・ 2" n-2 2 題 ¥7 よって 0 < 2. n! 2 n-2 n-2 2・2 2・2・ 1.2 3.3 =2· ここで, lim2.(1/2) VII 5-6 n n-2個 3・4・・・n≧3・3・・・3 より 2・2・・・2 2・2・・・2 3・4・・・n 3・3・・・3 = 0 であるから, はさみうちの |r| <1のとき limy"0 1-80 2" 原理より lim = 0 non!

解決済み 回答数: 1
数学 高校生

次の青線の移行がよくわからないのですがどなたか解説お願いします🙇‍♂️

== 21 1 1 1 1 -m(m+1)(2m+1)+ -m(m+1) 2 6 2 2 n(n+2) (nは偶数) 2 (ア)(イ)より S₁ = 1/12 (n+1)= ( n は奇数) よって = == 10mm+1)(+2) 1 -m³ + m² 2 6 =1 ( 1 ・ma+ ·m² + 2 2m²+1/2m² 2 m=1 3 m) + 1 " n 1 -n² (n+1)₂ 1 4 26 n(n+1)(2n+1)+ 11 n(n 2 16 12 12 +1){n(n+1)+2(2n+1) +4} =1m(n+1)(n+2)(n+3) 12 1 2 1 1 16 12 m(m+1){(2m+1)+3) m(m+1)-2(m+2) -m(m+1)(m+2) 273 次の数列{a}の一般項および初項から第n項ま (1) 1, 11, 18, 22, 23, 21, ... (1) 数列{az} の階差数列を {6} とすると {6}:10, 7, 4, 1, 2, これは,初項 10, 公差 -3 等差数列であるか 6m=10+(n-1)(-3)=-3n+13 よって, n2のとき =1+2(- ) (2 272S=1・2-2・3+3・4-4・5+5・6-6・7+・・・+ (−1)+1n (n+1) を求めよ。 (ア) nが偶数のとき, n=2m (m= 1, 2, 3, ...) とおくと Sn = S2m = =(1·2-2.3)+(3・4-4・5) + (5・6-6・7) +..+{(2m-1).2m2m(2m+1)} 】{(2k-1)・2k-2k(2k+1)} k=1 (-4k) =-4・ 1/12m(m+1) =-2m(m+1) n n=2m より, m= 12 であるから 1-1 -1 =1-32k+ =1-3- k=1 13 (n-1)n+13(n-1) 1 (3m²+29n-24) n=1 を代入すると1となり, α に致する。 したがって = 1/12(3n+an-24) 初項から第n項までの和をSすると 1 S₁₁ = 3k²+29k-24) =1/12(-329-24) 6 n+1)(2n+1)+29 ={(n+1)(+1)-29(n+1)+ 1 n(2n²-26n+ 4 n(n²-13n+10) - SN = − n ( 1/2+1) n(n+2) (イ) nが3以上の奇数のとき, n=2m+1(m= 1, 2, 3, ...) とお くと S=S2m+1=Szm+(2m+1)(2m+2) Emm 1)+\am + 1)(m2) =2(m+1)^ n-1 n=2m+1より, m= であるから 2 n- Sw=2("21+1)=1/2(n+1)* n=1 を代入すると2となり, S=1.22 に一致する。 nの式で表す。 (ア)の結果を利用する。 S2m を用いるから, nを 3以上の奇数とした。 (2) 数列の階差数列を {6} とすると 6}: 1, 2, 4, 8, 16, : これ初項 1, 公比-2の等比数列であるから bn=1(-2) -1 = (-2)"-1 よって, n≧2のとき an = 1+ (-2)*-1 1.{1-(-2)^-1} =1+ 1-(-2) = {4 3 11/12/14-(2)-1}

解決済み 回答数: 1
1/89