学年

教科

質問の種類

数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0
数学 高校生

まるで囲った2枚目の式が分かりません💦

(2)ある地域のタクシー会社のタクシー料金は、最初の1kmまでが500円で,そ の後は走行距離に応じて100円ずつ加算される。また,目的地に到着したときに 支払う料金を運賃という。 H ~90円 近年、キャッシュレス決済 (現金を使用せずにお金を払う方法) への対応やド ライブレコーダーの設置, アルコール検知器を用いた検査の義務化などによりタ クシー会社の負担が増したため、 来年から次のように運賃を改定することを検討 している。 【キャッシュレス決済の場合】 目的地に到着後の運賃を3%増額し、100円未満の金額を切り捨てた金額を 改定後の運賃とする。 【現金払いの場合】 目的地に到着後の運賃を3%増額し、100円未満の金額が50円以上のときは その金額を100円に切り上げ, 50円未満のときは100円未満の金額を切り 捨てた金額を改定後の運賃とする。 改定前に6000円だった運賃について、 改定後の運賃は 103 キャッシュレス決済の場合はイウ×100円 6000x leg 現金払いの場合はエオ×100 円 ・60x103 6180 となる。 =6100 運賃の改定後に200円の値上げとなるような改定前の運賃の範囲は (+200)円 xx100 キャッシュレス決済の場合はカキ×100円以上 クケ ×100円以下 103 (x+200)×100 現金払いの場合は コサ×100円以上 シス×100円以下 103x+206 100 である。 運賃の改定後にキャッシュレス決済と現金払いの差が最大となるような改定前 の運賃のうち、最小の運賃はセソ ×100円である。 キャッシュしす

回答募集中 回答数: 0
数学 高校生

問題の下の解説の「x,yの2次式の因数分解」 のところで、展開をしなくていいのは、 展開した式を入れ替えても答えは同じっていう 性質があるからですか?

2 因数分解/2次式 つぎの式を因数分解せよ. (酪農学園大酪農, 環境) (北海学園大工) (東北学院大・文系) (1) (a-b+c-1) (a-1)-bc (2) 4.2-13zy+10y2 +18æ-27g+18 (3)(x+2y) (æ-y)+3y-1 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 その文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. 仕 解答 xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」をすればよい。 (2)も, x,yの2次式の部分を因数分解すれば同様にできる(別解) 慣習 因数分解せよ,という問題では,特に指示がない限り, 係数が有理数の範囲で因数分解する. (2) (3) ((+23)(x-3) + 33-17 (1) まずcについて整理することにより, 与式= {c(a-1)+(a-b-1) (a-1)}-bc ←与式はαについては2次だが, b やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1)(a+c-1) (2) まずェについて整理することにより, (-a+b+1)(-a-c+Uod 与式=42-(13y-18)x + (10y2-27y+18) =4x²-(13y-18)x+(2y=3) (5y=6)... x= ={x-(2y-3)}{4m-(5y-6)} 2 × ①+56 7-2 →27 ←1 -(2y-3) × -(13y-18) =(x-2y+3)(4x-5y+6) 14 -(5y-6) 注 ① におけるたすきがけで, 試行錯誤するのを避けるためには, ①= {ar-(2y-3)}{bx-(5y-6)} とおき, 展開して係数比較すればよい. æの係数は (yは定数と見る), -{(5a+26)y- (6α+36)} となり, ー (13y-18) と一致するので 5α+26=13,6a+36=18. これを解いて α= 1, 6=4となる. (3) 与式={(x+2y)-1}{(x-y)+1} てんか =(x+2y-1)(x-y+1) 【別解】 (2) [x,yの2次式の部分をまず因数分解して, (3) と同様に解くと] であるから, 4.2-13ry+10y2=(x-2y) (4π-5y) 与式= (x-2y) (4-5y) + (18-27y) +18 このときの係数も一致する. x+2yx-13y x-y →-13 12--13 0 4 -5 ={(x-2y)+3}{(4x-5y)+6} =(x-2y+3)(4x-5y+6) 2 演習題(解答はp.22) (1) (ry) (x+y-z (z+2y) を因数分解せよ. (2) 3a+26+αb +6 を因数分解すると d)( x-2y 3 4x-5y 6 × -18x-27y 13) (48 (北海道薬大) である.また, (1) である. (3)は,例題 (2) と同様 (岐阜聖徳学園大) に2通りのやり方があ (静岡産大) . ry+xz+y2+yz+3 +5y+2z+6 を因数分解すると (3) 8-18y2+10x+21y-3 を因数分解せよ.

回答募集中 回答数: 0
数学 高校生

29番の(1)で必要十分条件を求める問題で、どちらが必要条件でどちらが十分条件か分からなくなってしまいました。考え方を教えて頂きたいです。

28 よって ここで ゆえに −(n=k+1}{n+k+1)+(n−k)(n+k) n→∞0 =-2k²+(2n²+2n+1) f(n)=-4 f(x)=x(2k² +2n² +2n+1) k²=0+22k², 1=2n+1 TA³5 k=1 −42 k²+(2n²+2n+1) (2n+1) k=1 − n(n+1)(2n+1)+(2n²+2n+1)(2n+1) lim 72-00 n³ (2) f(n) -1/(1+1/2)(2+1/2)+(2+1/2)(2+1)} =--²--1-2+2-2= 8 3 3 別解n≦x≦k, k≦x≦n と k<x<kに分けて,直線 y軸に平行な直線につ x=i (-n≦i≦n) 上にある格子点の数を求める。 さて格子点を数える。 = -n≦i≦k のとき, 格子点の数は k=-n 1+3++{2(n−k+1)−1}=(n−k+1)² = (+_____________ k<i<kのとき, 直線 x = i の本数は ←-k+1≦isk-1 各直線上の格子点の数は よって k-1-(−k+1)+1=2k-1 = I=gb S=b 2(n-k+1)-1=2n-2k+1 Nk=2(n-k+1)+(2n-2k+1)(2k-1) =-2k²+(2n²+2n+1) 総合を複素数とする。 自然数nに対し、2” の実部と虚部をそれぞれxとyとして、2つの数列 29 {Xn},{yn}を考える。 つまり, z=xn+iy" (iは虚数単位) を満たしている。 (1) 複素数zが正の実数と実数0を用いて z=r (cos0+isine) の形で与えられたとき、 数列{x},{ym} がともに0に収束するための必要十分条件を求めよ。 1+√3 10 = n(n+1)(2n+1) のとき、無限級数Σx とΣy はともに収束し, それぞれの和は n=1 71=1 x=2y=イロである。 (1) z=r (cos0+isin0) [r>0] のとき HINT (1) x²+y² = (r")2 となることに注目し, まず必要条件を求める。 (2) z を等比数列の和の公式を利用した式で表してみる。 ORAN z"=r" (cosnotisinn()=r"cosn0 +ir” sinne Xn=r" cosnd, yn=r"sinno よって ゆえに x2+yn²=(r")' (cos2nd+sin'nb)=(x2)" limxn=limyn=0のとき lim(x²+ym²)=0 〔類 慶応大] 本冊 例題 13,102 ←ド・モアブルの定理。 ←=xn+iy 0sr²<1 よって に0<r<1のとき 1-400 0<r<1より, lim|rl"=0であるから ゆえに 0≦|x|=||"|cos nolsrp. よって 0≦ly|=|||sinner| また 以上から、求める必要十分条件は +③iのとき 10 lim|x|=lim|y|= 0 71-00 ゆえに 1110 Z ここで1-2 lim xnn-000 ZR= ここで k=1 z(1-2)= 1-² よって 1- 1+√3 i 10 1+√3 i 10 k=1 84 3+5√3 i 42 (1+√3i)(9+√3 i) (9-√3i)(9+√3 i) 6+10√3i_3+5√3i 2x= k=1 1-2 (1-(xn+iyn)) 1+√3 i 9-√3i 11-0 0721 0<r<1 n=1] -(1-Xn-iyn) 2R= = 1/2 (3(1-xn) +5√3 yn+(5√/3 (1–xn)—3yn}i) z*= (xn+iyn)= xx+iZyn k=1 3(1-x₂)+5√√3 yn 42 ΣXn² n=1 42 5√3 (1-xn)-3yn 42 0</1/3 <1であるから, (1) の結果より limxn=limyn = 0 „=lim 11-00 2 k=1 2 = = = = ( 1²/2 + √²³_i) = = = (cos / 1 + isin) Σyn=lim- 11-0 ←Sa<1のとき a²19 a=1のとき、 α>1のとき、18 42 ←xel Saxolxel から、 xel 0のとき 初項z. 公比zの等比 数列の初項から第 環 までの和 12-00 3 (1-x)+5√3ym_3_71 42 5√3 (1-xn)-3yn_15√/3 42 -419 ←分母の実数化。 42 14 ← 22 のもう1つの表現。 ←実部、虚部をそれぞれ 比較。 (12) 結果を利用 総合 N=1 £ =lim ży

回答募集中 回答数: 0
1/34