学年

教科

質問の種類

数学 高校生

(2)の問題がわかりません。 散布図は、1に近いので正の相関は、わかりますが、図の書き方がわかりません。なので➃か⑥で迷いました。 あと、ケの範囲はどう求めますでしょうか? 教えていただきたいです。🙇‍♀️

9 8/6/ Ex 14 データの相関関係 男女5人ずつが, 国語と数学のテ 制限時間 15分 男子 女子 ストを受けた。 国語 45 37 39 31 23 33 35 46 41 29 (1) 男子の国語の点数の平均値は 35点 分散は56 であり, 男子 の数学の点数の平均値は アイ点,分散はウエである。 また, 男子の国語と数学の 点数の相関係数は オカキである。 ただし, 小数第3位を四捨五入して小数第2位 まで答えよ。 数学 34 32 31 30 23 25 32 38 40 25 (2)男女10人の国語の点数をx, 数学の点数をyとし,x,yの相関係数をrとする。 x, yの散布図として正しいものは ク |,rの範囲として正しいものは ケ である。 ク ケ には,当てはまるものを,下の①~⑥のうちから1つずつ選べ。 -0.9 <r <-0.7 ① -0.5 <r <-0.3 ② 0.3 <r<0.5 0.7 <r < 0.9 ④ 45 ⑤ 45 ⑥ 45 40 35 40 40 8.0 35 0 35 y 30 25 + • 20 y 30 30 25 25 • 20 20 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 解答 (1) 数学の点数の平均点は (34+32 +31 +30 +23) アイ [30] 基本 14-1 5 よって、 数学の点数の分散は -{(34-30)'+(32-30)'+(31-30)'+(30-30)+(23-30)^} 5 1 70 ウエ (16+4+1+0+49)= = 5 5 国語と数学の点数の共分散は 1/ -{(45-35)(34-30)+(37-35)(32-30)+(39-35)(31-30) +(31-35)(30-30)+(23-35)(23-30)} 132 = ~ ( 40+4+4+0+84) = -=26.4 1に近い 5 5 26.4 26.4 オカキ ゆえに、相関係数は =0.942≒ +0.94 ○ 基本 14-2 √56×√14 28 (2)正しい散布図は’④ 更に、この散布図から, xとyの間には強い正の相関があること が読みとれる。 したがって, rの範囲として正しいものは ○基本 14-3 解法の思考回路 数学の点数の平均値,分 散を求める。 相関係数を求めるために, 国語と数学の点数の共分 散を求める。 散布図の特徴から, 相関 係数の値の範囲を絞りこ む。 データの分析

解決済み 回答数: 1
数学 高校生

どうして定義の式からことイメージ図が出てくるのか分かりません。教えていただきたいです🙇‍♀️🙇‍

226 第8章 データの分析 基礎問 138 偏差値 ある会社の入社試験で,国語と数学の試験が行われた. 国語の平均値を,標準偏差を S, 数学の平均値をy,標準偏 差をsy とするとき, x=62, Sx=15, y=55, sy=20であった. (1) 受験者Aは,国語, 数学ともに80点をとった. それぞれの科 目の偏差値を求めよ. ただし,平均値が m, 標準偏差が0のデータに対して,変量 x-mx10+50で求められる値である. O ェの偏差値は (2)2人の受験者 A, B に対して, 得点は右表の ようになった。 科目間の難易度を反映させるた めに, 得点の合計ではなく、 偏差値の合計で合 否を決めることになった. A,Bのどちらが上位の成績といえるか. A B 国語 80 74 数学 80 87 合計160 161 受験生には、切っても切れない数値である偏差値がテーマです。 |精講 受験生でない人でも,この単語を聞いたことがないという人はいな いと思いますが,どうやって求めているのか,どんな意味をもって いるのかを知らないで,「偏差値が65 だから・・・」 などという会話を耳にします。 また,世間では,偏差値は悪者のようにいわれているという側面も否定でき ません。 入試ではこの問題のように定義の式が与えられるので,覚えておく必 要はありませんが、せめて「異質な数値に対する評価方法の1つ」であること は知っておいてほしいものです。 定義の式から得られる偏差値のイメージは下図のようなものです. 48 49 50 51 52 0 m x2 m-. m m+ 10 10 # m+ x2 10 62 10 平均点 10

解決済み 回答数: 1
数学 高校生

数Ⅰデータの分析の質問です。 1枚目の表(ⅰ)、表(ⅱ)にある数学、国語のテスト結果の度数、相対度数から2枚目の表(ⅲ)、表(ⅳ)にある結果はどのように導けるか教えてください🙇🏻‍♂️ 数学が80点以上かつ国語が80点以上がなぜ48人であり9.6%となるのか分かりません よ... 続きを読む

◆データの分析の補足◆ 2 元表を利用しよう! ある高校で,500人の生徒にある数学と国語 (現代文) のテストを行った。 このテストについて, 表 (i) 数学のテスト結果 A:80点以上, A:80点未満 数学 A ((i) 数学で, 80点以上の生徒達をA, 80点未満の生徒達をĀとおき,また, (i) 国語で, 80点以上の生徒達をB, 80点未満の生徒達をBとおいて, それぞれの人数を調べて集計すると,次のような表 (i) (ii) の結果が得られた。 ここで,AAを,それぞれ数学が 得意な人達と不得意な人達とし, B とBもそれぞれ国語が得意な人達 と不得意な人達と分類することにす ると,表(i) から, 数学が得意な度数 人は全体の20%で, 不得意な人は 80%であることが分かる。 同様に 表 (ii) から, 国語が得意な人は全体 の40%で,不得意な人は60%であ ることが分かるんだね。 100 400 相対度数 20% 80% 表 (ii) 国語 (現代文)のテスト結果 B:80点以上, B:80点未満 国語 B B でも,このように数学と国語のデ ータを個別に見ている限り, これだ けで終わってしまうんだけれど,学 校側には,各生徒の数学と国語のデ 度数 200 300 相対度数 40% 60% ータは共にそろっているので、この2つのデータを併せて,集合論で学んだ n(A∩B), n(A∩B), n (A∩B), n (A∩B) を,次の表 (ii) や (iv) のような形 数学と国語 数学が得意で 数学が不得意 数学と国語が が共に得意 国語が不得意で国語が得意 共に不得意な な人の人数な人の人数 人の人数 で表すことができるんだね。 250 人の人数

解決済み 回答数: 1
数学 高校生

❌って書いた5のとこが、多分2になるんですけど、どうしても5になります、 どこが違うか教えてほしいです。

19 43つの集合の要素の個数 (1) 00000 |100人のうち, A市, B市, C 市に行ったことのある人の集合を,それぞれA B, C で表し, 集合Aの要素の個数を n (A) で表すと, 次の通りであった。 n(A)=50, n(B∩C)=10, n(B)=13, (C)=30,n (ANC)=9. n(ABC)=28 n(A∩BNC) = 3, (1) A市とB市に行ったことのある人は何人か。 (2) A市だけに行ったことのある人は何人か。 指針 /p.333 基本事項 集合の問題 図をかく 集合が3つになるが, 2つの集合の場合と基本は同じ まず、解答の図のように、3つの集合の図をかき、わかっている人数を書き込む また、3つの集合の場合、 個数定理は次のようになる。 n(AUBUC)=n(A)+n(B)+n(C)-n(ANB)-n(BNC)-n(CNA)+n(ANBg 全体集合をひとすると n(U)=100 -U(100)- ANBOC (28) ANBNC 重要 分母を 1 810 , の個数 指針 A(50) 解答 また n(AUBUC) =n(U) -n (A∩BNC) =100-28=72 図から,ド・モルガンの 法則 B (13) C(30) (1) A市とB市に行ったことの ある人の集合は A∩Bである。 A∩BNC=AUBUC が成り立つことがわかる -n(BNC)-n(CNA)+n(ANBNC) 3つの集合の個数定理 (2) -U- n(AUBUC)=n(A)+n(B)+n(C) -n (A∩B) に代入すると 72=50+13+30-n (A∩B)-10-9 +3 したがって n(A∩B)=5 よって, A市とB市に行ったことのある人は 5人 (2)A 市だけに行ったことのある人の集合は ANBOC である。 ゆえに(A∩BNC) =n(AUBUC)-n(BUC) =(AUBUC)-{n(B)+n(C)-n(B∩C)} =72-(13+30-10)=39 よって, A市だけに行ったことのある人は 39 人 別解 (2) 求める人数は n(A)-n(ANB) -n(ANC) +n(A∩BNC) =50-5-9+3=39 よって 39 人 ある高校の生徒 140人を対象に、国語、数学、英語の3科目のそれぞれについ 4 得意か得意でないかを調査した 得意な 解答

解決済み 回答数: 1
数学 高校生

この教科書の下の問いの答えを教えてください。

17:59 10月13日 (日) 71% 自己とは他者である。 この言葉から、どんなことをイメージするだろうか。 人から余計なお節介でうっとうしいアドバイスをされたりすると、「自分のこ とは自分がいちばんよく知っているから、ほっといてくれ。」と言いたくなる。人 m にはこちらの気持ちなんかわからない。自分のことは自分にしかわからない。そ う思うことがある。 そう思って自分と向き合い、自分自身を捉えようとすると、これが結構 100 自分の ことがよく見えなかったりするのだ。 近すぎてわからないのか、「なんであんなことを言ってしまったんだろう。」「自 分は、本当はどうしたいんだろう。」「なんでこんなにムシャクシャするんだろう。」 と、わからないことだらけ。そんなことになりがちだ。 そうしてみると、いちばん身近であるはずの自分が、実はとても遠い存在なの かもしれない。そのような意味で、自己とは他者であると言うのではないか。そ れも一理ある。 でも、ここではもう一つの意味を考えてみたい。 誰でも自分についてのイメージを持っている。 「自分は何があっても前向きで、笑顔で頑張っていけるタイプの人間だ。」とい" 自己イメージを持っている人もいる。「自分は神経質で、慎重なのはよいかも しれないが、どうも細かなことにとらわれすぎる。」という自己イメージを持つ人 もいる。「自分は人の気持ちがよくわかる優しい性格だ。」という自己イメージを 持つ人もいる。 では、そうした自己イメージは、どのようにして作られたのか。 S 4「いちばん身近であ るはずの自分が、実 はとても遠い存在な のかもしれない。」と は、どういうことか。 閉じる

解決済み 回答数: 1
1/17