学年

教科

質問の種類

数学 高校生

波線が引いてある部分についてです。最後の×3は何を表していますか?

基本(例題9 (全体)(・・・でない)の考えの利用 10000 |大,中, 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 本 指針 「目の積が4の倍数」を考える正攻法でいくと,意外と面倒。 そこで、 (目の積が4の倍数)=(全体)-(目の積が4の倍数でない) として考えると早い。 ここで, 目の積が4の倍数にならないのは,次の場合である。 [1] 目の積が奇数→3つの目がすべて奇数0 →偶数の目は2または6の1つだけで、 2つは奇数100 差50てい 指 早道も考える CHART 場合の数 (Aである)=(全体)(Aでない)の技活用 わざ 解答 目の出る場合の数の総数は 6×6×6=216(通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。よい。) [1] 目の積が奇数の場合 (I+1)×(1 と書いても 積の法則(6" 奇数どうしの積は奇 3つの目がすべて奇数のときで 3×3×3=27 (通り) 1つでも偶数があれば [2] 目の積が偶数で, 4の倍数でない場合 積は偶数になる。 3つのうち, 2つの目が奇数で、残りの1つは2または64が入るとダメ。 の目であるから1(32×2)×3=54 ( [1], [2] から, 目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって,目の積が4の倍数になる場合は (の) 216-81=135 (通り) 掛け(全体)・・・でない) HOON (

解決済み 回答数: 1
数学 高校生

(2) のベン図のBの部分に2と9が入るのはなぜですか?

解 64 基本 例題 35 2つの集合と要素 00000 (1) U=(1, 2, 3, 4, 5, 6, 7} を全体集合とする。 Uの部分集合 A={1, 4), B={2, 4, 5, 6} について, 集合 ANB, AUB, AUB を (2) 全体集合 U={x/1≦x≦10, xは整数} の部分集合 A, B について、 A∩B={3, 6, 8), A∩B={4, 5, 7}, A∩B={1, 10} とする。 求めよ。 このとき, 集合 A, B, AUB を求めよ。 CHART 集合の要素 OLUTION ベン図の活用 p.62 基本事項 1 基本38 集合に関する問題は,ベン図 (集合の関係を表す図) をかくとわかりやすい。......!! (1) まず, A∩B の要素を求めて図に書き込む。 そして, A,Bの残りの要素を 書き込んでいく。 (2)要素のわかっている集合 A∩B, ANB, A∩B が図のどの部分かを調べて、 その要素を図に書き込んでいく。 (1) A∩B={4} よって, 右の図のようになり B 2 A∩B A∩B={2,5,6} AUB={1,3,4,7} AUB={3,7} (2)条件から、右の図のようになり U A={1,3, 6, 8, 10} 4 1 B={2,3, 6, 8, 9} 5 10 7 AUB ={1,2,3,6,8,9,10} 2 3/6/8 6 AUB B 基本 例題 36 実数全体を全体集合 C={x|k-5≦x≦k (1) 次の集合を求め (ア) A∩B (2) ACCとなる CHART SOL 解答 不等式で表され 集合の要素が入 すとわかりやす その際、端の で表しておく 例えば,P= (1) 右の図から (ア) A∩B={x|- (イ) AUB={xl (ウ) B={xx<- (エ) AUB={x| (2) ACCとなる k-5-2 6≦k+5 が同時に成り立 ①から k≤ 共通範囲を求め INFORMATIO (2) において, ACC′ となる A AUB すなわち, 1 置する会体 PRACTICE... 35% ② (1)=1,2,3,4,5,6, 7, 8} を全体集合とする。 Uの部分集合 A={2,5, B={1, 3, 5} について, 集合 ANB, AUB を求めよ。 (2)1桁の自然数を全体集合ひとし その2つの部 A∩B={3, 9}, A∩B={2,4 Bを求めよ。 6) PRACTICE・・・ 3 B={x|-3< (1)次の

解決済み 回答数: 1
1/39