学年

教科

質問の種類

数学 高校生

(1)の四角で囲ってる部分がよくわからないです。なんでこの計算になってるのかひとつずつ教えて欲しいです。お願いします🙇‍♀️

00 二項 1 の 次の等式を満たす整数x、yの組を1つ求めよ。 例題 126 1次不定方程式の整数解(1) 11x+19y=1 MART & SOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 00000 (2) 11x+19y=5 p.463 基本事項 1,2 11と19は互いに素である。 まず, 等式 11x+19y=1のxの係数11 との係数 19 に 互除法の計算を行う。 その際, 11 <19 であるから, 11 を割る数, 19 を割られる数として 割り算の等式を作る。 =11,6=19 とおいて,別解 のように求めてもよい。 の係数との係数が (1) の等式と等しいから, (1) を利用できる。 (1)の等式の両辺を5倍すると 11(5x)+19(5y)=5 よって、 (1) で求めた解を x=p, y = g とすると, x=5p, y=5g が (2)の解になる。 (1) 465 3=2・1+1 移すると 1=3-2.1 1=2- JJ 3=11-8・1 4章 15 319, 5, 次 めあうに いる 煮)。 (1) 19-11-1+8 移すると 8=19-11・1数解を 別解 (1) α=11,b=19 さ 取る 11=8・1+3 移すると 311-8.1とする。 8=3・2+2 移すると 28-3・2819-11・1=b-a 残る。 4個 よって 1-3-2-1-3-(8-3.2).1 方形 ちょ ごき すなわち 長さ 回数。 ユークリッドの互除法と1次不定方程式 11 33 =8・(-1)+3・3=8・(-1)+(11-8・1・3・ =11・3+8・(-4)=11・3+(19-11・1)・(-4) =11.7+19.(-4) 11・7+19・(-4)=1 ...... ① ゆえに、求める整数x、yの組の1つは x=7,y=-4 (2)①の両辺に5を掛けると すなわち 11•(7·5)+19•{(−4)•5}=5 よって、求める整数x、yの組の1つは 11・35+19・(-20)=5 x=35,y=-20 + =a-(b-a) 1=2a-b 2=8-3-2 =(b-a)-(2a-b)・2 + =-5a+36 (2)の整数解にはx=-3, y=2 という簡単なものも ある。このような解が最初に発見できるなら,それを 答としてもよい。 PRACTICE 126 次の等式を 13-2・1 =(2a-b)-(-5a+3b).1 =7a-4b すなわち 11・7+19・(-4)=1 よって求める整数x、yの 1つはE x=7, y=-4 慎重に 介 ート

未解決 回答数: 1
数学 高校生

青チャート数学Ⅲ77ページの練習45です 重要例題45の⑵と同じ様に 練習45もこのようにやったら間違いですか?

(1) すべての自然数nに対して、1+1が成り立つことを証明せよ。 1 1 k=1 1 (2) 無限級数1+ n + +....+ +...... は発散することを証明せよ。 2 3 ・基本 34, 重要 44 指針 (1) 数学的帰納法によって証明する。 (2) 数列{1} は0に収束するから、p.63 基本例題 34のように,p.61 基本事項 ② を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 n2" とすると k=1 k k=1 1/11/ 4 ここで,m→∞のときn→∞となる。 (1) k ≥1/12+1 ① とする。 無限級数 阻 解答 [1] n=1のとき k=1k 1/2=1+1/2=1/1/3+1 よって, ① は成り立つ。 +1 [2]n=m(m は自然数)のとき,①が成り立つと仮定すると100+ このとき 2 11+1 k=1 k (+1)+2+1 2m+1 k=2m+1 k 1 1 + ++ 2m+2 2m+1 > m2m2 1 1 +1+ + ++ 2m+1 2m+2. 2m+2m_ 1 m+1 +1+ .2m= +1 2m+1 2 よって, n=m+1のときにも ① は成り立つ。 1 12m+1=2m2=2"+2" 1 1 2m+1 2+2+2 (2+) 2m+k (k=1, 2,., 2-1) [1] [2] から, すべての自然数nについて①は成り立つ。 (2)S=2とおく。 n≧2" とすると, (1) から k=1 k m m Sn≥ +1 ここで,m→∞のときn→∞ で lim (7/27 +1)=0 .. limSn=∞ m-oo 8012 したがっては発散する。 an≦bnでliman=∞⇒limbn=∞ (p.343②) 72-00 12-00 n=1n 重45の結果を開いて、無限級数学は発散 0 (2)より、 m を示したい 同様に n Th=8とおく。≧とすると、 k=1 12/2計++言を計計+2より 2m m Th≥ 8 +1 : lin Th=00 " 題意は示された

未解決 回答数: 1
数学 高校生

(1)の問題で、なぜ2p,2p-1 となるのかがわかりませんでした。解き方を、理由含めて教えてもらえると嬉しいです。

例題 58 (2) 12299500 Gas ピタゴラス数の証明 ★★★☆ (1) αを自然数とするとき, αを4で割ったときの余りは0か1であるこ とを示せ (2)1,m,nを自然数とする。 +mmならば,L,mのうち少なくと も1つは2の倍数であることを証明せよ。 結論 向 RoAction 余りに関する証明は、余りによる分類 (剰余類)を利用せよ 例題56 (2)条件の言い換え (ア)だけが2の倍数 1(d) 問題編 5 46 ☆☆☆☆ 47 ★☆☆☆ 次の (1) (2) 次①② 思考プロセス 「結論」 Actiser P ( だけが2の倍数 (ウ), ともに2の倍数 3つの場合があり《Goit 証明しにくい Action» 「少なくとも~」の証明は,背理法を利用せよ 解 (1) 自然数αは2で割った余りに着目すると, 2p 2p-1 56 (自然)のいずれかで表すことができる。 (ア) α = 2p のとき a2= (2D)2=4p2 は自然数であるから, は整数である。(1 よって, d' を4で割った余りは0である。 4で割ったときの余りで 分類してもよいが, 2で 割ったときの余りで場合 分けして考えても うま 4でくることができ る。 (イ)a=2p-1 のとき a² = (2p-1)² = 4(p² − p) +1 は自然数であるから, は整数である。(= よって, d を4で割った余りは1である。 (ア)(イ)より, d を4で割ったときの余りは0か1である。 (2) l, mがともに2の倍数でないと仮定すると e) = M 48 ☆★☆☆ 49 ★★

未解決 回答数: 1
1/1000