学年

教科

質問の種類

数学 高校生

至急です 数ⅠAの問題です エからが分かりません 誰か教えてください

| 104 | 数学ⅠA実戦問題 実戦問題 5 ★★☆ 制限時間15分 (1)辺の長さが等しい正方形と正三角形を、1つの辺で貼り合わせてできた多角形の辺り はア ] である。 また、辺の長さが等しい正六角形と正三角形を,1つの辺で貼り合わせ してできた多角形の辺の数はイである。 (2) 太郎さんと花子さんは,面が合同な正多角形である2つの正多面体を, 1つの面で貼り 合わせてできる多面体について話している。 太郎: 例えば, 2つの正四面体を貼り合わせてできる多面体の面の数は、2つの正四 面体の面の数の和から貼り合わせた面の数を引けばよいからウだね。 花子:他の2つの正多面体の組み合わせでも同じことがいえるのかな。 太郎:右の図のように,正八面体 ABCDEF と正四 面体 ABCG を貼り合わせたとき,△ABGと △ABEは1つの平面上にあるように見える ね。 花子:確かめてみよう。 △ABC の定める平面と △ABG の定める平 方針に 面のなす角をα △ABCの定める平面と 太郎さんが △ABE の定める平面のなす角をβとしたと E B F G I が成り立てば △ABG と △ABEは1つの平面上にあるといえるね。 また、き オ [キク 太郎 : cosa= cos β= I であるから, が成り立つね。 数学Ⅰ・A 同様に,4点 A,D, C, G 4点B, F, C, G も1つの平面上にあるから, 正八面体と正四面体を貼り合わせたとき,面の数は だね。

回答募集中 回答数: 0
数学 高校生

解説お願いします。 黄色マーカー以前までは理解出来たのですが、黄色マーカーから紫マーカーへの流れがよく分からないです。 教えていただけると嬉しいです。 よろしくお願いします。

第1講 確率と漸化式 1 図のように、正三角形を9つの部屋に辺で区切り,部屋 P, Q を定める。 1つの球が部屋Pを出発し, 1秒ごとに,そのままそ の部屋にとどまることなく, 辺を共有する隣の部屋に等確率で 移動する. 球がn 秒後に部屋 Q にある確率を求めよ. P Q 《12 東大理科文科》 【著】3(金) 11- (nが偶数のとき) (nが奇数のとき) 【解説】 右図の様に P と Q 以外の部屋を定める. 最初に球はPの部屋にあることより, nが奇数のときには球はP,Q, R以外の部屋にあり, nが偶数のときには球はP,Q,R のどこかの部屋 にある. 以下を偶数とする. m+2秒後にQ の部屋に球があるのは 1 (I) m秒後にPにあり,確率 3 でAに移動して、確率 1/12 で Q に移動する. 1 (II) m秒後にQにあり,確率 でAに移動して、確率 1/12 でQに移動する。 3 1 (III) m秒後にQにあり,確率 でBに移動して,確率1でQ に移動する. 3 1 A R Q B (IV) m秒後にQにあり,確率 でCに移動して、確率 1/2でQに移動する。 3 (V) m秒後にRにあり、確率 1/3でCに移動して、確率 1/1 -で Q に移動する. の5つの場合だけ考えればよいので, n秒後にP,Q,R にある確率をそれぞれ Pn, Qn, Rn とすると, Qmtz=Pmx/1/31/1/2+Qmx1/2×1/28+Qmx/3×1+Q×1/2×1/2+Rmx/1/3×1/2 6 Qmtz=2/12 (Pa+Rm)+/Qm 2 3 が成り立つ。ここでPm+Qm+Rm=1よりPm+Rm=1-Qm を代入すると Qm+2=1/03(1-Qm)+/30m 6 ⇔ Qm+2= Qm + 2 == 1 | Qm + 1/14 2 6 ⇔ Qm Qm+2- + 2 − 1 = 1 ½ (Qm −1 ) ---① dm - 3 2 となり,最初球がPにあることよりQ = 0 と定めることができるので,Q=0と① より Q2n = {1-(2)"}

解決済み 回答数: 1
数学 高校生

三角形OACの高さについてです。 オレンジ色で波線が書いてあるところがわかりません。 なぜ2sinθ=-sin(120°-θ)ではないのですか。

から また、0<x2a<πであるから 数学Ⅱ 153 << 2 えに、<cosa <1の範囲において、Rはcosa= のとき最大値 2/23 をとる。 ←y< 1 X3 58 2 すなわち a= ←△ABC は正三角形。 <y-x<2 200 72 <y-x < 0 2 練習 162 0を原点とする座標平面上に点A(-3, 0) をとり, 0°0 <120°の範囲にある0に対して,次の 条件(a), (b) を満たす2点 B, Cを考える。 a) Bはy>0の部分にあり, OB=2かつくAOB=180°-0である。 (b)Cy<0の部分にあり,OC=1かつくBOC=120°である。 ただし, △ABCは0を含 むものとする。 (1) AOAB と AOACの面積が等しいとき、0の値を求めよ。 20°<<120°の範囲で動かすとき,△OAB と AOACの面積の和の最大値と,そのとき のsin0 の値を求めよ。 △OAB と △OAC はOA を共 有するから,OAB と AOACの 面積が等しいとき,それぞれの高さ が等しい。 ここで,条件から,動径 OBとx軸の正の向きとのなす角は 180°(180°-0)=0 △OAB の高さは 2 sin 0 2sin=sin(120°-Q)... √3 y B A 180°-6 A x -3 0 120° C △OACの高さは sin(120°-0) ゆえに 1 よって 2sin0= cos 0+ 0+1/2 sin 2 ゆえに 3 sin 0=√3 cos 0 8=90° は ① を満たさないから 0=90° ②の両辺を cose で割って tan0= √3 0°<< 120° であるから 0=30° 〔東京大〕 ←OBsin0 [ ←OCsin (120°-0) X3 (1) E8 ←①の右辺に加法定理 を用いた。 ←6=90° を ① に代入す ると 2sin90°=sin30° これは不合理。 803 4章 練習 章 [三角関数] [同志社大 ] 弐。 給 から, 定。 (2) AOAB と AOACの面積の和をSとすると √√3 S=-3(2 sin0+ cos 0+ =3.2/7 2 -coso+ 1/23sine) = 2424 (5sino+√3 cose) ・2√7 sin(0+α)=3√7 -sin (0+α) 2 ただしsina= √21 5√7 COS α= (0°<a<90°) " 14 14 ① 0°0<120°0°<α <90° より、0°<0+α<210° であるから, この範囲において, Sは0+α=90° のとき最大となり,そのes osa 最大値は 3√7 -sin90°= ..1= 37370 2 2 2 また、+α=90°のとき 5√7 sin=sin(90°-α)=cosa= 140-D >820 -Qua ←三角関数の合成。 の値を具体的に求め られないときは左のよ うな「ただし書きを忘 れないように。 miaa

未解決 回答数: 2
1/174