学年

教科

質問の種類

数学 高校生

この問題の エオで解答2ページを見た時に矢印の変換がなぜそうなるかわからないです(>_<) なぜ上の式からBは-4にならないことがわかるのですか? 教えてください!!!!

例題太郎さんと花子さんは方程式の解の個数に関する問題について話している。 二人の会 話を読んで、下の問いに答えよ。 問題 3次方程式(x-2)(ar2+bx+4)=0 (a,bは定数) が異なる二つの実数解をもつと きαをの式で表せ。 太郎: この3次方程式は (1次式)×(2次式)=0の形になっているから,x-2=0より,一つの実 数解がx=2だとわかるよ。 花子: そうすると, 2次方程式 ax+bx+4=0が残りの一つの実数解をもてばいいから, (i) 2次方程式 ar²+bx+4=0がx=2以外の重解をもつ場合 (ii) 2次方程式 ar2+bx+4=0がx=2ともう一つの異なる解をもつ場合 を考えればいいね。 まずは (i) の場合を考えてみると・・・ 判別式を利用して, a= となるわ イウ 太郎: だけどこれだと2次方程式の解がx=2の場合も含んでいて, 2次方程式の重解がx=2 だと,3次方程式の解は一つになってしまうから 2次方程式の解がx=2となるときを除 外しよう。 花子: そうか。 つまり6 キエオだね。 太郎: その前に他に何か忘れていることはなかったかな? 花子: そういえば, 「3次方程式」 と書いてあるから・・・。 太郎: あっ! そうだ! ar+bx+4は必ず2次式になるから,αキ カだね。 次は, (ii) の場合を考えよう。 a を6で表した式や条件はキ になるね。 (1) ア イウエオ カに当てはまる数値を答えよ。 (2) キに当てはまるものを、次の①~③のうちから一つ選べ。 b2 a= 6-4, 0 16 ①a< 62 16 6-40 a=-(6+2), (6+2), 6-2 11- 11/12 (6+2), 6-4, -2 数学- 26

回答募集中 回答数: 0
数学 高校生

解答解説を作ってこいという課題を出されたのですが、全く分からず作ることができません😿 答えだけでなく解説も加えてお願いしたいです。 全問という大変なお願いをしてしまいすみません🙇🏻‍♀️

宿題数列{a} は +1=4+2 (n=1, 2, 3, ...) +a2+as=-42 第5問2枚目のマークシートの右側に解答すること あるクラスで次の宿題が出された太郎さんと花子さんがこの宿題について話している。 数列{6m} は を満たすものとする。また, 数列 (42)の初項から第n項までの和をS (n=1, 2, 3, ...) とする。 az*aitg. Q2 a2=Qit2. as=az+2. b1=1 bm+1=b+S (n=1,2,3,...) を満たすものとする。 (1) 数列 {4} の一般項と S を求めよ。 A-1 (2) T=2S(n=1,2,3, ...) とおく。 T, を求めよ。 " afidized (3)数列{bm) の一般項をもとめよ。また,-1)(n=2, 3, 4, …) を求めよ。 (4)6m (n=1,2, 3, ...) が最小となるような自然数の値を求めよ。 42-42 30146:42. 2の等差数列とわかるね。 イイとわかるね。だから, an= エ 22- オカ 太郎:まず(1) について考えよう。 ① から, 数列{m} は公差が 花子:そうだね。さらにa1+a2+αs=-42から,初項 α」が 数列 {4} の一般項は だね。 a₁ = -42-093 Qus 太郎: じゃあ, 等差数列の和の公式から Sm=n2 キク am=唄-平項 46- 701-48 a₁ = -16 だね。 (2) はどうやって解くのかな。 1 花子: 1 k=1 n(n+1)2n+1)とk=1 ケb n(n+1)の公式が使えるよ。 A=1 2 太郎: そうすると, T 1 = (n+1)シスだね。次は,(3)だ。 サ このとき

回答募集中 回答数: 0
数学 高校生

黄色の部分どういう計算したらこの答えが出ますか?どなたか教えてもらえると嬉しいです

514 |指針 00000 重要 例 66 数列の和と期待値,分散 トランプのカードが枚n≧3)あり,その中の2枚はハートで残りはスペード 枚ずつめくっていく。 初めてハートのカードが現れるのがX枚目であるとき である。 これらのカードをよく切って裏向けに積み重ねておき,上から順に1 (1) X=k(k=1,2,…....., n-1) となる確率 n を求めよ。 (2)Xの期待値 E(X) と分散 V (X) を求めよ。 解答 n-1 (2) 期待値はE(X)=2 kbk を計算して求めるが, kかにはんの多項式となるから, k=1 k,k2,k の公式 (p.438 参照) を利用してΣ を計算する。 計算の際,nはkに無関係であるから、nk=nkなどと変形。 (1) は,枚目に初めてハートが現れ、それまではす であるから p= KD 全部でん n |-1| (2) |E(X)=E¹ kpx= 2 k. 2(n-k) n(n-1) k=1 ペードn-2枚 ペードター前にイン 前に引いた スペード 枚でハート、つまり1枚でスペード引いてる = n-2 n-3 n-4 n n-1 n-2 n-1 k=1 2 n n(n-1) (n ² k-2 k²) k=1 スペースペースペード ハート n-2-(k-2) n-(k-2) 2 n(n-1) 6 n+1 3(n-1)*(n-1)=n+1 また (DE), (1) n-1 E(X²) = Σk²pk=k². 2(n−k) k=1 スペスペンハート = 2 n(n−1) 12²_1) {n • _/\_n(n+1)_ _²}\n(n+1)(2n+1}} 練習n 本 (nは3以上の (kt 前まで 3 だから ひ . • \n(n+1){3n—(2n+1)} 2²-₁ (n²k³²-2k³) / € 1.00 n(n-1) k=1 k=1 [奈良県医大 ] みで 2(n-k) -(k-1) n(n-1) だから けず よってV(X)=E(X)-{E(X)=n(n+1)(n+1)* (n+1)(n-2) 18 k-1枚までなら次は スペード の入場列に で 基本 64 ドが現れる確率 2 [n_ck-u 2 n(n-1){(n = n(n+1) (2n+1)== n²(n+1)²} <2r={{n(n+1) _ n(n+1) p=0であるから Σkpn=1 kpx k=1 またに関係しない n の式を 前に出す。 2k=n(n+1) 2k¹= n(n+1)(2+1) K-1枚までスペード (1)D やん けそう 重要 2枚の をXk (1) n (2) 2 指針 解答 星 検討 PLUS LONE

回答募集中 回答数: 0
数学 高校生

分からないのでどなたかお願いします🙇

〔2〕 表1は, 次郎さんの 「定期テストの結果」 の一部である。 次郎さんの学年には 全部で200人の生徒がおり、 結果欄には、テストの満点, 次郎さんの得点, 学年 全員の再点の平均値(以下、平均点)、次郎さんの前点の開発、20人中で 位が表示され、得点の分布圏には、学年全員の神経の度数分布が表示されている。 ただし、同じ得点の生徒は同じ順位とし、1位の生徒の人数が(n=1)の場合 その次に高い得点の生徒がいれば,その生徒の順位はx+n (位) とする。 得点の分布点 結果 満点(点) 得点(点) 点 平均 偏差値 順位 (位) 96~100 91~95 86~90 81~85 76~80 71~75 66~70 61~65 56~60 英語 100 74 65 48 56 136/200 47 / 200 1 0 10 4 18 12 表 1 100 68 71 29 32 32 25 11 10 11 15 26 27 20 26 (数学Ⅰ・数学A 第2問は次ページに続く。) この 「定期テストの結果」 を見て、 次郎さんと兄の太郎さんが話している。 次郎: 今回の国語のテストでは, 100位以内になることが目標だったんだけど, 残念。 太郎 その目標は、学年全員の得点の (1) 以上の点をとることと同じだね。 表1からわかるのは、今回はタチ点をとっておけば確実に目標を達 成できたということだね。 については,最も適当なものを、次の⑩~③のうちから一つ選べ。 最頻値 また、 ① 中央値 ②平均値 ③ 代表値 タチに当てはまる最小の整数を求めよ。 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

数1の2次関数の問題です。 もし良ければ ア、イ、オ、カ、キの問題の解説をお願いします🙏🏻🥺 答えは、ア,③ イ,-5<α<4 ウ,④ エ,③ オ,-aの二乗+a カ,-6 キ,-2<a<3 です!!

16 風早君と爽子さんが一緒に宿題で出た問題を考えています。 次の会話文を読んで, P.DE ア ウ I は選択肢から選び, イ オ カ まる式や値を答えなさい。 ( と エ 9 アの選択肢: ①:D> 0 9 (1) どんなxの値に対しても f(x) > g(x) が成り立つ -46- (2) どんな x1, x2 の値に対しても f(x1)> g(x2) が成り立つ。 ウと 【 宿題 】 2つの2次関数f(x)=x2-2ax+a,g(x)=−2x2+4x-8について、次の条件を 満たすように,定数aの値の範囲を求めよ。 H 9 キ はあては は同じものを選んでもよい) (ア): 1点, (イ) : 2点 (ウ) と ) 完答: 2点, (オ) ~ (キ) : 各2点 風早:(1) が成り立つためにはすべてのxの値に対して、f(x) - g(x)>0となればいいね! 爽子:そうか! y=f(x) - g(x) とおくと、 すべてのxの値に対して>0となるαの範囲を 求めればいいんだね。 風早 : そうだね。 f(x)-g(x)=0 の判別式をDとすると、 ア ア 爽子: を解いてみると….. 答えはイ だね。 (1) は解けたぞ! 風早 : やった! 次は (2) かぁ。 (2)は...(1) と何が違うんだろう? 爽子 : (1) は f(x)とg(x) に代入するxの値が共通だけど, (2) は共通とは限らないよ。 風早: 本当だ、 爽子さんよく気が付いたね。 ということは, (2) が成り立つためには (f(x)のウ)> (g(x)の エ)となればいいね! 爽子: f(x)の ウはオで,g(x)のエ はカだからオ 解けばいいね! 風早 : できた! 答えはキだ! となればいいんだよ。 > カを ②:D=0 ③:D<0 ③ :D < 0 ④:D≧0 ④ :D20 ⑤: D≤0 エの選択肢: ①: 軸 ②: 判別式 ③: 最大値 ④: 最小値

回答募集中 回答数: 0
数学 高校生

33番の問題教えてほしいです、 右の写真は解答なんですけど、なんでeの次にle、loe、losといった順番で考えていくのかがわかりません。 eのつぎはelじゃないの?とかleの次はloじゃないの?と思ってしまいます。 誰か教えて下さるとありがたいです至急お願いします!!!

■18 d₂ (1) 文字列 earth は何番 考え方 辞書式に並べるときの順番はアルファベット順である。 4!個 解 (1) a ○○○○となる文字列は 次に, eah ○○となる文字列は 次に, ear ○○となる文字列は よって, 文字列 earth は 数学A 2!個 earht, earth 4! + 2! +2 = 28 (番目) (2) ○○○○○○○○ となる文字列は 3!=6 (個) ha ○○○ となる文字列は よって,ここまでに 48+6=54 (個) 並ぶ。 したがって, 55番目の文字列は heart たる文字列を 4! × 2 = 48 (個) 33e, 1, 0, s,vの5文字全部を使って辞書式に配列するとき, 次の問に答え | (1) 文字列 loves は何番目か。 (2) 88番目にあたる文字列を求めよ □ 34 5色の絵の具がある。 右の図の5個の部分を、この5色の絵の具 すべてを使って塗り分けたい。 塗り方は何通りあるか。 ただし, 回転 させたときに他の塗り方と一致する場合, それらの塗り方は同じもの と見なす。 37 † 例題 3 B IL あるか。 解 38 1の整 39 上

回答募集中 回答数: 0
数学 高校生

わかる方いますか?

9 下の問題について, 太郎さんと花子さんが会話をしている。 には次の⑩~ ⑤ の うちから当てはまるものを1つ選べ。イ~ソには0~9のうち当てはまる数を 1つずつ答えなさい。 ⑩ x>0,y>0 ① x > 2,y>3 ③x<0,y<0 ④ x<2,y<3 [問題] (log2(x+2)-210g(y+3) = -1/……….. ① x+1 +6=0 太郎 : 対数が出てくるから、まず真数の条件を考えなくちゃいけないね。 x,yのとり ・③だよ。 次はどうしようか。 うる値の範囲はア ****** Yoga 花子 ①は対数の底がそろえば簡単にできそう。 底の変換公式を使えば log₂ (y + 3) log (y+3)= イ 太郎 : 1/23 の累乗があるから、t=( 1=(1/3) そこからも求められそうだ。 花子 ② は - オカt+ キク =0. x=log3 ス x>-2, y> -3 ⑤ x<-2, y<-3 得られるよ。 これを②に代入すればいいんじゃない? う となるから, y=x+ 花子: そうすると求める x, yの値は セ ア y=log3- ・・・・・・ ...... を満たす実数x, y を求めよ。 に代入すればxの値が求められるね。 太郎:tのとりうる値の範囲は考えないといけないんじゃない? 花子: そっか。 文字を新たに定義したら気を付けないといけないね。 ③, ⑤から ケ<t<コだから, ⑥ を解く サだよ。 ソ I ・⑤と置けば②はt で表せるよ。 ④が①から になるんだね。 ⑥ とかき直せたよ。 この方程式の解を ⑤

回答募集中 回答数: 0
1/5