学年

教科

質問の種類

数学 高校生

問題文の意味がいまいち理解できないです。そもそもKを、得点として終了するのだから得点は必ずKになるのでは無いのですか?教えて頂きたいです。

1からnまでの数字を1つずつ書いたn枚のカードが箱に入っ ている.この箱から無作為にカードを1枚取り出して数字を記録し, 箱に戻すという操作を繰り返す.ただし,回目の操作で直前のカー ドと同じ数字か直前のカードよりも小さい数字のカードを取り出し た場合に,k を得点として終了する.2≦k≦n+1を満たす自然数 kについて,得点がk となる確率を求めよ 東北大の一部 とする. カードの取り出 《解答》 カードの数字を出た順に a1, A2,A3, し方は全部でnk通りある.このうち ... * A1 < A2 < A3 < ... < ak となる場合は,a から ak までの数字の組み合わせはnCk通りで, 並べ方は 小さい順に1通り,それ以外は任意だから,この場合の確率は nck nk よって, 求める α < az <a3 <・・・ < ak-1 ≧ak となる確率は, a1 < Q2 < Q3 <… < ak-1 / ak (実際は ak-1 以降の大小は任意だから ai < az < az <・・・ <ak-1 と同じ)となる確率から ・・・ < ak-1 < ak となる確率を引いたものだから a1a2a3 <... nCk-1 1= nk-1 nCk nk n! = = = .k-1 n -1(n-k+1)!(k-1)! n!.n.k-n!(n-k+1) nk(n-k+1)!k! n!(n+1)(k-1) nk(n-k+1)!k! (k-1) (n+1)! nkk!(nk+1)! = n! nk(n-k)!k! n!(nk-n+k-1) nk(n-k+1)!k!

解決済み 回答数: 2
数学 高校生

数列の問題で分からない点があるので教えて頂きたいです。(1)で1と2はまとめてしまっているのに3と4はそれぞれを足し合わせている理由がわからないです。教えて頂きたいです。

n 数学 B 117 2を正の整数とする。A,B,Cの3種類の文字から重複を許してn個の文字を1列に並べると 総合 き、AとBが隣り合わない並べ方の総数をfnとする。例えば, n=2のとき,このような並べ方 は AA, AC, BB, BC, CA, CB, CCの7通りあるので,f2=7である。 6 (1)AとBが隣り合わない並べ方のうち, n番目がAまたはBであるものをgn通り, n番目 Cであるものをん通りとする。このとき,n+1, hn+1 を gn, hn を用いて表せ。 (2) 数列 {fm} に対して, fn+2 をfn+1とを用いて表せ。 fn+1 (3) an= により定まる数列{an}について, an と an+1 の大小関係を調べよ。 fn [東北大 ] 本冊 数学 B 例題 54 (1) n+1番目が AまたはBであるものは,次の4つの場合があ←番目と n+1番目に る。 [1] n番目がAで,n+1番目もAS) ( 1 + 注目。 ←AとBが隣り合わな [2] n番目がB で, n + 1番目もB hh [3] n 番目がC で, n +1番目は A いに注意。 [4] 番目がCで, n+1番目はB n番目が AまたはBであるものは [1] と [2] を合わせてgn 通 りあり, n番目がCであるものは [3] と [4] それぞれでh, 通 りずつあるから gn+1=gn+2h ...... ① また, n+1番目がCであるものは, n番目はAでもBでもC ② でもよいから hn+1=gn+hn ... G

解決済み 回答数: 1
数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

解決済み 回答数: 1
1/11