学年

教科

質問の種類

数学 高校生

この問題なんですが Pを x、Y、0遠いて計算して 出すというのでは答えが違うのはなぜなんですか? 字が汚くてすみません。

-118 Think (686) 第11章 空間のベクトル 例題 C1.60 空間における交点の座標(2) **** 2点A(5, 0, 9), B(1, 4, 3) と xy 平面上を動く点Pに対して, AP+PB の最小値と,そのときの点Pの座標を求めよ. 同じ側 ABS ・平面 考え方 2点A, B が xy 平面に関して反対側 にある場合, AP + PB が最小となる のは, 3点AP Bが一直線上にあ る場合である。 同じ側にある場合は, xy 平面に関してBと対称な点B' をと ればよい 反対側 AS P xy 平面 ・B B' 直線の方程式をベクトル方程式で考えて, 媒介変数表示する。 Abs 2点A, B を通る直線のベクトル方程式は OP=OA+tAB である=10 解答 2点A, B は xy 平面に関して同じ側にある. xy 平面に関して点Bと対称な点をNHAT もに正なので, B'(1, 4, -3) とおくと, PB=PB' より, AP + PBが最小となるのは, 3点A,P, B' が一直線上にあるときである. AB' = (-4,4,-12) より, OP=OA + tAB' =(5,0,9)+t(-4,4,12)x =(5-4t, 4t, 9-12t) A,Bの座標がと xy 平面に関して同じ側 にあるとわかる. 直線 AB'′ と xy 平面 15 P B' y の交点が求める点P である. 9 したがって、点Pの座標は, (5-4t, 4t, 9-12t) ・① 013+8 点Pはxy平面上の点より 座標は0だから, 9-12t=0 t=- 3 このとき,P(230) 2-)-A2AO HO (S) 50-RO-1 よって,P(2,30) のとき,AP+PBは最小となり AP+PB=AB、 =√√(-4)'+4°+(-12) =4/11 (3 tを①に代入する. Focus 直線のベクトル方程式 OP = OA+tAB =OA+t(OB-OA) =(1-t)OA+tOB 10-010

解決済み 回答数: 1
数学 高校生

数IIサクシード 不等式の表す領域400 不等式の表す範囲、グラフは書けたのですが、全ての組み合わせを書くとなると、領域ギリギリのところを見落としたり、余分に数えたりすることが多いです。正確に全て書くコツや見落としていないか確認する方法はありますか?

>0 すなわ y- x+. 8-5 K1 -2 分である。 直線 BC の方程式は 直線 CA の方程式は x=-3 y=-3-2 -1-0 (x-2) -60 すなわち y=- 1 2 1≤0 -2 rec A, B, C を頂点とす る三角形の内部および 周上は,右の図の斜線 部分である。 ただし, 境界線を含む。 B 3 ある。 この斜線部分は, 直線ABの下側, C -1A 直線 BC の右側, 直線 CA の上側, の共通部分である。 80 x=2のとき,①,②から y² <4, y>- これを満たす整数yは y = 0,1 y2<1,y>0 x=3のとき,①,②から これを満たす整数y は存在しない。 よって、求める整数 ( x, y)の組は T-1, 0), (0,1),0,0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) 401 (1)xy>1から x-y<-1 または 1<x-s すなわち y>x+1 または y<x-1 よって,求める領域は 〔図] の斜線部分である。 ただし、境界線を含まない。 (2)x+y≤1 …………… ① x0,y≧0のとき,①は x+y≤1 よってy≦-x+1 x0,y<0 のとき,①は x-y≤1 よってy≧x-1 x< 0, y≧0 のとき,①は よって, 求める連立不等式は x+y よって y≦x+1) y- [y≤ -1x+ 4 8 x < 0, y<0 のとき,①は 5 x≧-3 (4x+5y-8 10+よって y≧-x-1 すなわち x+3≥0 ゆえに、求める領域は [図] の斜線部分である。 ただし,境界線を含む。 大 1 2 x-5y-2 この図の斜線部分1 (2) (1) 400 x2+y2-2x-4<0から +2 (x-1)2+y2<5 >4 x-2y-3<0から 3 y> 2x-2 ② よって, 与えられた不 等式の表す領域は,右 の図の斜線部分である。 ただし,境界線を含ま ない。 1-√5 図から 1-√5 <x<1+√5 これを満たす整数xは x=-1のとき, ①,②から これを満たす整数yは x=-1, 0, 1,2,3 x=0のとき, ①,② から これを満たす整数y は x=1のとき, ①,② から これを満たす整数 yは ① −10 -1 y2<1,y>-1 y=0 <4,y> / y=-1, 0, 1 y2<5, y>-1 y=0, 1, 2 402 指針 直線 y=ax + b が2点 P, Q を結ぶ線分 PQ と 両端以外で交わるとき, 右の図からわかるよう に, 2点P, Qは,直線 y=ax+bに関して反対 側にあるから、点P, Q y y>ax+b Q x <ax+b の 一方がyax+b の表す領域, 他方がy <ax+b の表す領域 にある。 条件を満たすのは、2点P,Qのうち,一方が直 線 y=ax+b の上側,他方が下側にあるときで ある。

未解決 回答数: 1
1/1000