学年

教科

質問の種類

数学 高校生

❓マークがついているところで、 2b-aとgが〜から、g=1になるところがわかりません。 教えてください。

第4問 整数の性質 【解説】 (1) P 27+31 2n+1 (2n+1)+30_ 2n+1 + 30 2n+1 Pが整数となるのは, 2n+1 が30の約数のときであるから, 2n+1 (nは正の整数) が3以上の奇数であることを考慮すると、 2n+1=3,5, 15. ②x2- 2n+2=26g - 2n+1= ag 22m²+78m+56 R= (n+m)(2n+1) nmは整数であるから,Rが整数のとき、 Q-(n+m)R このときの値は(3)より, も数である よって、 1 = (26-a)g なる。 であり,それぞれのの値に対して, Rの頃は次の表のように 1,2,4,7,22 n= 1 1 n 1 2 4 7 22 (2) 2n+1 a b を用いて、 +1 は、 最大公約数および互いに素な正の整数 とすことができる。 ②x2-(より, [2n+1=0. n+1=bg 2 b-ag= 2b-a とgはともに整数であり, g≧1 であるから, 52 60 R 80 112 276 m+1 m+2 m-+-4 m+7m+22 ... a また, n=1,2,4,7,22のそれぞれの額に対して,m=0 の ときのRの値は次の2のようになる。 2 n 1 2 47 22 R 52 30 20 16° 138 11 g= 2③ したがって,m=0 のとき,Rがとり得る異なる整数値の総和 は、 (3) 22m²+78n+56=(n+1 (22n+56 56-11=45 =(n+1){11(2n+1)+ 45 52+30 +20 +16 118 以下,60 とする. n=1のとき, m +1≧61 より より, 22m² +78n+56 Q= 2n+1 2ntlentli 互いに素だから 割りきれない. (n+1)(11(2n+1)+45} 2n+1 (+1)(1+ 45 2 2n+1 2n+1 =11(n+1)+45(n+1) ここで, (2) より 2n+1 と n+1 の最大公約数は1, すなわち, 21n+1 は互いに素であるから, Qが整数となるのは, 2n+1 が45の約数のときである。 2n+1 が3以上の奇数である ことを考慮すると, すなわち 2n+1=3,5, 9, 15, 45 n=1, 2, 4, 7, 22. よって, Qが整数となるの値は全部で5 個ある。 m+1 <l すなわち <R<1 であるから, Rは整数ではない、 n=2のとき,m+262 より 0<- m+2 であるから, Rは整数ではない. くすなわちくR<1 n4のとき、 80 m+4 が整数となるのは、+4 が 80 の約 のときである+464であることを慮すると、 m+480 すなわちm=76. 7のとき、が整数となるのは、+7 が112の約 数のときである。 767 であることを考慮すると、 m m+7=112 すなわちm=105. n=22 のとき,mmが整数となるのは、+22276(火 約数のときである、+222であることを考慮すると、 -26- -27-

解決済み 回答数: 1
数学 高校生

この解答はあっているか教えてください。よろしくお願いします🙇

・6番目の のデータ 3.28 (金) データの分析2 データを変えるとどうなるか 次の表は、あるクラスの生徒10人があるゲームをしたときの得点をまとめたも のである。 ただし, ゲームの得点は整数値をとり、表の数値はすべて四捨五入 されていない正確な値である。 中央館 生徒名 A B C D E F G HI J 平均値 27 得点 10 14 20 22 28 30 33 35 38 40 その後、得点を集計した際にデータの入力ミスがあったことが判明した。この 誤りを修正したところ、2人の生徒の得点がともに10点上がり、残りの8人の 生徒の得点は変わらなかった。 このとき、 以下の問に答えよ。 (1) 修正した後での、 10人の得点の平均値を求めよ。 (2) 修正する前と後で, 10人の得点の第1四分位数と第3四分位数の値はとも に変わらなかった。このとき,修正の前後で得点が変わった可能性がある 生徒は誰と誰か, すべての場合を答えよ。 (3)(2)で求めた場合のうち, 修正後での10人の得点の標準偏差が一番小さくな るものを答えよ。 37 30 50 (1) 10+(10+14 +10+12+18+20+ 23+25 +28+30)÷10 =10+190÷10 =10-19 =294 27×10 290 10 +20 90 50 29 サ (2)AとDAとIAとJ. (3)(i)AとOのとき 女 14,20,20,28,30,32,33,35,38,40 (1)AとⅠのとき S=8,074. (4,20,20,22,28,30,33,35,40,48 S=9,859 38 (ⅲ)AJのとき 14,20,20,22,28,30,33,35,38,50 S=10,05 2. A&D Aと

解決済み 回答数: 1
数学 高校生

数Ⅰの一次不等式で、赤い四角で囲ったところが分かりません。教えてください‼️

(1) 不等式 5x-7 <2x+5 を満たす自然 3a-2 (2) 不等式x<L 4 を満たすxの最大の整数値が5であるとき、 定数α( αの値 基本 34 の範囲を求めよ。 指針(1)まず,不等式を解く。その解の中から条件に適するもの(自然数)を選ぶ。 (2)問題の条件を数直線上で表すと, 右の図のようにな 6 3a-2 る。 のの を示す点の位置を考え、問題の条 5 3a-2 I 4 4 件を満たす範囲を求める。 (1) 不等式から 3x<12 自然数=正の整数 kをk>2を満 5-x≦x<2x す整数xがち. (ア)不等 (イ) (ア) る。 たす 4は含まない 解答 したがって x<4 xは自然数であるから x=1,2,3 (2)x< 3a-2 を満たすxの最大の整数値が5であるから 声の左下立 解答 1 2 3 4 X 5- 4x< 5-x≤4x 4 (0- 5 < 3a-2 4 4x<2x+ ≤6 (*) (3a-2 4 5<3a-2 8- から 203a- Dr 22 =5のとき,不等 式はx<5で、条件を満 たさない。 k>2であ よって a> 3 ① 3a-2 生 3a-2 e>xɛ 4 6から 3a-2≦24 4 26 -= 6のとき、不等 の向 式は x<6 で,条件を満 たす。 また,これ よって as その整数 ゆえに 3 (2) ① ② の共通範囲を求めて 注意 (*)は,次のようにして解いてもよい。 各辺に4を掛けて 各辺に2を加えて l 20<3a-2≤24 22 <3a26 00 05% 3 223 <a≤ 285 26 3 すなわち 3a-2 6 4 不等式の端

解決済み 回答数: 1
1/17