学年

教科

質問の種類

数学 高校生

矢印以下のグラフの書き方が分からないです😭 CとDの両方のグラフの書き方を教えて頂きたいです😭😭

•5 最大・最小を候補で求める a>0 とする.f(x)=x(x-3a)(0≦x≦1)の最大値をαの関数とみてg (a) とおく. (1) g (a) を求め, ab平面にb=g(α) のグラフの概形を描け. (2) g(α)の最小値とそれを与えるαの値を求めよ. 最大・最小の候補を比較 閉区間 (a≦x≦βの形の区間)で定義された関 数 f(x) の最大値・最小値は '区間の端点での値'または'極値”のいずれか である.極値を与えるxの値が定数αの入った式である場合, 式だけで最大最 小を考えるよりも,先に最大値(最小値)の候補となる値('区間の端点での値' と‘極値')のグラフを描いてしまい,それらを比べる方が見通しがよい. 解答言 (1) f(x)=x(x-3a)2=x3-6ax2+9ax f'(x) =3x2-12ax+9a²=3(xa)(x-3a) 図1 y=f(x) 4a3 f(a)=4a3, f(3α)=0であり,a>0より y=f(x)のグラフは図1のようになる. 84 (関大 総合情報) 極 値 区間の端点での値 [極大値を与えるx=αが0≦x≦1に入っている かどうかで場合分け] O a 3a 積の微分法 {g(x)(x)}' =g(x)h(x)+g(x)h'(x) を使うと, f'(x) =1(x-3a)+x2(x-3a) 図 2 =(x-3a){(x-3α)+2x} 0≦a≦1のとき YA YA =3(x-3a)(x-a) 最大値はf(a)(=4α) f(1)(=(1-3a)2) 15 C の大きい方 (図2). a 1 セットで a 1 1≦a のとき 図3 最大値はf(1)(=(1-3a)) (図3) YA ここで チェリュー(エリー(エ)ギュー(仮) C: b=4a³ (0≤a≤1) D: b= (1-3a)2 のグラフを描く. .. . (4α-1) (a-1)2=0 0<a<1での, C, D の交点を求めると 4a=(1-3α) 2 4a3-9a2+6a-1=0 O X A la 図 4 b₁ 4 (い C:b=4a3 より (1/4,1/16) b=g(α) のグラフは,図4の太線部であり, 1/4≦a≦1 g(a)=(41-3a)²/ <a≤1/4, 1≤a 19 D: 1 16 b=(1-3a)2 16 この式は,f (a) = f (1) を変形 したものであるからα=1が解で あり, (a-1)で割り切れる. O 11 43 ←C,D のうち, 高い方をたどった ものがb=g(a) のグラフ. 1 (2)図4より,a= 4 のとき,最小値9 (12) (1/4) 1/16 をとる。 =

回答募集中 回答数: 0
数学 高校生

高一 物理  速度の求め方と⑪の求め方を教えて欲しいです

√3+√5+15-17) (√3-√5 +√7)(-√3+√5 2+6x のア 式 ※各点を折れ線で結んではいけない。 各点の最も近傍を通るような直線または曲線を描く。 また,おもりの重さを変えたグラフは同じ軸内に記入し, 比較できるようにする。 11 v-t グラフの傾きから,それぞれのおもりについての加速度を求めよ。 ※ 加速度を求めるための値は,グラフの方眼の値から読みとる。 例えば, OS の時の速度と0.40s の時の速度を読み取り,その傾きを計算する。 計算の過程を記入すること。 0.40 「くだせれ たす おもりの重さ 0.50kg(500g ) 1.00kg (1,000g) 番号 時刻 中央時刻 t[s] t[s] 位置 変位 速度 x[cm] Ax[cm] v[cm/s] 位置 変位 速度 x[cm] Ax[cm] v[cm/s] 0 0.000 0.00 定める 0.00 0.020 0,500 ・25.0 2.50 62.5 1 0.040 0.50 2,50 0.060 0.700 17.5 2090 77215 ある 2 0.080 5.400 1.20 0.100 1,200 30.0 3.40 85.0 3 0.120 ある 2.40 8,80 0.140 1,300 32.5 [か] 4.60 115 4 0.160 3.70 13.40 0.180 2.00 50.0 4.00 110 5 0.200 5.70 17,40 0.220 2.40 60.0 4,50 11136 部 6 0.240 8.10 21.90 0.260 2,80 70.0 5.00 1125 7 0.280 10.90 26.90 0.300 3.10 7.7.5 5,30 133 18 0.320 14.00 32:20 0.340 3.500 8.75 5.60 140 9 0.360 17.50 37.80 0.380 4,100 102.5 6.10. 2153 10 0.400 21.40 43.90 |加速度の計算過程と値。 加速度の計算過程と値。 00/07 -3-

回答募集中 回答数: 0
数学 高校生

(2)で「-1/√3<m<1/√3」からXの範囲を求めるとき、 解答のようにではなくて、三枚目のように考えてしまいました。 これでうまく求められないから、 解答のようにYの範囲を求めて図を描くことで、Xの範囲を求めよう! っていう思考回路ですか?

偶数の関係を使った ④よりm=1/2で⑤に代入しY=1/2x2-2x ③ ④ により,X < 0 または 8 < X 2 X,Yをx, y に書き換え, 求めるMの軌跡は よって, X=2m……… ④ であり,Mは①上にあるから,Y=mX-4m...⑤ X D=m²-4m>0 .. <0 または 4<m (3)P,Qの座標をα,βとし,M(X, Y) とおくと,x=α+B αβは②の2解であるから,解と係数の関係により,a+β=4m 2 ③ これから軌跡の限界が出てく P,Qの座標をm で表す必要 このようなときは具体 急がず、とりあえず文字でお ⑤ではなく. 34 y=14x²-2x Y= 16 y= x²-2x (x<08<x) であり,右図太線である (○を除く) 8 I 1-1/2 (+) (a+B)-2a8 8 =2m²-4m と ④ からYをXで表しても たことはないが(本間の場 ⑤ (直線上にあること)に着 るのがうまい。 補助に考える。 円が を通るときは別に調 く。 12 演習題 ( 解答は p.104) 円(x-2)2+y2=1と直線y=mzが異なる2点P, Qで交っているとき, (1)の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は その座標を明示せよ). (群馬大理工,情/改題) Mが直線上にある をうまく使う、なお 形的に解くことも る.

回答募集中 回答数: 0
数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0
数学 高校生

これの(2)の解き方の考え方を教えて欲しいです。

C1-40 (226) 第3章 平面上の Think 題 C1.22 ベクトルと軌跡 平面上に△ABC があり, 実数kに対し、 12p=46+5c-kc-b) 3PA +4PB+5PC=kBC を満たして動く点Pがある。このとき,次の問いに答えよ. (1) kがすべての実数値をとって変化するとき, 点Pの描く図形を図示 せよ. (2)△PAB, △PBCの面積をそれぞれ, S, S2 とするとき S:S2=1:2 となるようなkの値を求めよ. 考え方 (1) 点Aを基点として,AB=AC=CAP= とおいて与式に代入し、 の形に変形するは,を通りに平行な直線) 解答 wwwwwwwww (2) △ABCの面積をSとし,まずは S, S2 をそれぞれSで表す。 (1)点Aを基点とし,AB=1, AC=C, AP= とおく. 3PA+4PB+5PC=kBC より 3(-)+4(-)+5c-p)=k(c-b) AP: AQ=3:4 ...... ② より 4 41 38' 3 ベクトルと図形 (227) C1-41 **** であるから,S:S2=12 のとき, ST -S 80 △ABQの面積を S3 とすると, もう片方を特定 したがって, BQBC=1:6 ...... ③ 次に, ①を変形すると, △ABC: △ABQ =BC: BQ 0 んを含まない部分 12 46+5cc-6) ......1 (動かない) と, kを含 12 む部分(動く)に分け 49 3.46+52 (-b) る. -5-(-6)=5¬BC 9 12 9 10 A AP= (4+k)+(5-k)c 12 であり,②より ATH 0 AQ=1/AP=12(4+k)+(5-k)c 3 (4+k)b+(5-k)c よって, 交点の付 9 BQ=AQ-AB 12 (4+k)b+(5-k)c 一言 上の点である. 9 より,Qは直線 BC 点PがABCの内部 の場合と外部の場合が ある. 45246 第3章 4+k 5-k_9 1 9 9 9 RA 12 3-4 A 線分 BC を 54 に内分する点を D, 線分AD を だからBQBC-156k1 ORO 9 3:1 に内分する点をEとすると, wwwwwwwww A ADBC-AEBC 002+111.015-k=1 6 GO+AO-1 FP G wwww よって,点Pは点E を通り辺BC に平行な直線上 にある. RIA 3 5-k=± Q E 6 + P 11 その直線と辺 AB, AC の交点を F, Gとすると, AF: FB=AG: GCA B 5-D--4-C よって、 k = 1/12 1/27 7 13 2' =AE ED =3:1 であるから,点Pの描く図形 は、 右の図の直線 FG である. F P B PF G Q1B C kがすべての実数値を とるので,直線 FG と なる. 注》頂点Bを基点とし、BA=BC=BP=_ とすると 3PA+4PB+5PC-kBC 1, 3(a-p)+4(-p)+5(c-p)=kc となる. 5-k P この式を整理すると, 12 よって、点Pは,辺AB を 3:1に内分する点 F を通り直線 BC に平行な直線上を動く. B C 練習 01.22 ABCがあり実数kに対して、点PがPA+2P+3PC=kAB を満たすも B1 B2 ADDを求めよ C1 (2)直線APと直線BCの交点をQ とすると, FG/BC より AQ:PQ=AB:FB=4:1 したがって,△ABCの面積をSとすると,点Pが どこにあっても,△PBC の面積 2 は一定で, S= s

回答募集中 回答数: 0
1/21