数学
高校生

矢印以下のグラフの書き方が分からないです😭
CとDの両方のグラフの書き方を教えて頂きたいです😭😭

•5 最大・最小を候補で求める a>0 とする.f(x)=x(x-3a)(0≦x≦1)の最大値をαの関数とみてg (a) とおく. (1) g (a) を求め, ab平面にb=g(α) のグラフの概形を描け. (2) g(α)の最小値とそれを与えるαの値を求めよ. 最大・最小の候補を比較 閉区間 (a≦x≦βの形の区間)で定義された関 数 f(x) の最大値・最小値は '区間の端点での値'または'極値”のいずれか である.極値を与えるxの値が定数αの入った式である場合, 式だけで最大最 小を考えるよりも,先に最大値(最小値)の候補となる値('区間の端点での値' と‘極値')のグラフを描いてしまい,それらを比べる方が見通しがよい. 解答言 (1) f(x)=x(x-3a)2=x3-6ax2+9ax f'(x) =3x2-12ax+9a²=3(xa)(x-3a) 図1 y=f(x) 4a3 f(a)=4a3, f(3α)=0であり,a>0より y=f(x)のグラフは図1のようになる. 84 (関大 総合情報) 極 値 区間の端点での値 [極大値を与えるx=αが0≦x≦1に入っている かどうかで場合分け] O a 3a 積の微分法 {g(x)(x)}' =g(x)h(x)+g(x)h'(x) を使うと, f'(x) =1(x-3a)+x2(x-3a) 図 2 =(x-3a){(x-3α)+2x} 0≦a≦1のとき YA YA =3(x-3a)(x-a) 最大値はf(a)(=4α) f(1)(=(1-3a)2) 15 C の大きい方 (図2). a 1 セットで a 1 1≦a のとき 図3 最大値はf(1)(=(1-3a)) (図3) YA ここで チェリュー(エリー(エ)ギュー(仮) C: b=4a³ (0≤a≤1) D: b= (1-3a)2 のグラフを描く. .. . (4α-1) (a-1)2=0 0<a<1での, C, D の交点を求めると 4a=(1-3α) 2 4a3-9a2+6a-1=0 O X A la 図 4 b₁ 4 (い C:b=4a3 より (1/4,1/16) b=g(α) のグラフは,図4の太線部であり, 1/4≦a≦1 g(a)=(41-3a)²/ <a≤1/4, 1≤a 19 D: 1 16 b=(1-3a)2 16 この式は,f (a) = f (1) を変形 したものであるからα=1が解で あり, (a-1)で割り切れる. O 11 43 ←C,D のうち, 高い方をたどった ものがb=g(a) のグラフ. 1 (2)図4より,a= 4 のとき,最小値9 (12) (1/4) 1/16 をとる。 =

回答

まだ回答がありません。

疑問は解決しましたか?