学年

教科

質問の種類

数学 高校生

なぜ4acの符号がプラスではなくマイナスなのでしょうか?

解の公式 平方完成という, 2次方程式を解く万能の手法を手に入れたので,どんな2 次方程式でも(「実数解がない」ということも含めて)解くことができるように なりました.ところが,同じような作業を繰り返しているうちに,「もっとこ の作業を効率よくできないか」と考えるようになるのは自然でしょう. 2次方程式は一般的に 第1章 ax2+bx+c=0 (a≠0) という形をしていますから、先ほどの作業をこの文字のまま行えば,解を a, b, cという3つの係数だけを用いて表すことができるはずです. 少し煩雑な 作業ですが,いったんその式を作ってしまえば,今後同じ事を繰り返さずに一 気に答えを出すことができるのですから、やってみる価値は大いにありそうで す. 根気のいる式変形ですが,実際に鉛筆を持って一行ずつ式を書きながら追 いかけてみてください. まずは平方完成です. ax2+ a (x²+1)+c b として x+c=0 x2の係数αでくくる 2 b 62 + lah Ad² +c=0 平方完成の基本の変形 2 2 x+ +c=0 式は複雑ですが,以前の項で説明した 「平方完成の手続き」を踏んでいるだ けです. 次に,これを「最も基本的な2次方程式」 の型にもっていきます。 b a(2+)-6²-4ac0 4a=0j COM

未解決 回答数: 2
数学 高校生

(1)の問題で、なぜ2p,2p-1 となるのかがわかりませんでした。解き方を、理由含めて教えてもらえると嬉しいです。

例題 58 (2) 12299500 Gas ピタゴラス数の証明 ★★★☆ (1) αを自然数とするとき, αを4で割ったときの余りは0か1であるこ とを示せ (2)1,m,nを自然数とする。 +mmならば,L,mのうち少なくと も1つは2の倍数であることを証明せよ。 結論 向 RoAction 余りに関する証明は、余りによる分類 (剰余類)を利用せよ 例題56 (2)条件の言い換え (ア)だけが2の倍数 1(d) 問題編 5 46 ☆☆☆☆ 47 ★☆☆☆ 次の (1) (2) 次①② 思考プロセス 「結論」 Actiser P ( だけが2の倍数 (ウ), ともに2の倍数 3つの場合があり《Goit 証明しにくい Action» 「少なくとも~」の証明は,背理法を利用せよ 解 (1) 自然数αは2で割った余りに着目すると, 2p 2p-1 56 (自然)のいずれかで表すことができる。 (ア) α = 2p のとき a2= (2D)2=4p2 は自然数であるから, は整数である。(1 よって, d' を4で割った余りは0である。 4で割ったときの余りで 分類してもよいが, 2で 割ったときの余りで場合 分けして考えても うま 4でくることができ る。 (イ)a=2p-1 のとき a² = (2p-1)² = 4(p² − p) +1 は自然数であるから, は整数である。(= よって, d を4で割った余りは1である。 (ア)(イ)より, d を4で割ったときの余りは0か1である。 (2) l, mがともに2の倍数でないと仮定すると e) = M 48 ☆★☆☆ 49 ★★

解決済み 回答数: 1
1/27