学年

教科

質問の種類

数学 高校生

高1数学1のチャート102の例題についてです。 解説でやっていることは理解できるのですが、 共通解をαとおき、二つの式を繋いで、整理した式の判別式Dとして、それが=0になるように計算し、kを出すことはなぜできないのでしょうか。(2枚目) 勘違いしているところが多いので、根... 続きを読む

DOO 重要 例題 102 2次方程式の共通解 00000 2つの2次方程式 2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数の値を定め、その共通解を求めよ。基本 指針 570 2つの方程式に共通な解の問題であるから,一方の方程式の解を求めることができ たら、その解を他方に代入することによって、定数の値を求めることができる。しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では,次の解法 が一般的である。 2つの方程式の共通解を x =αとおいて、それぞれの方程式に代入すると ①, a2+α+k=0 2a2+ka+4=0 ...... これをαについての連立方程式とみて解く。 ②から導かれる k=--α を ① に代入(kを消去)してもよいが, 3次方程式と なって数学Ⅰの範囲では解けない。 この問題では,最高次の項であるα2 の項を消去す ることを考える。なお,共通の「実数解」という問題の条件に注意。 定 CHART 方程式の共通解 共通解をx=α とおく 葬共 171 重要 122 解く。 は、 3章 11 1 2次方程式 ...... 解答 共通解を x=αとおいて, 方程式にそれぞれ代入すると 2a2+ka+4=0 D, a²+a+k=0( (2) ①-② ×2 から (k-2)a+4-2k=0 ゆえに = (x)) α の項を消去。この考 (k-2)(a-2)=0 Za F3 F45 よってまた または α=2 k=2 え方は、連立1次方程式 を加減法で解くことに似 ている。 [1] k=2のとき 0=+x+x 2つの方程式はともに x'+x+2=0 となり, この方程式 数学Ⅰの範囲では, 73 の判別式をDとすると D=12-4・1・2=-7 D<0 であるから,この方程式は実数解をもたない。 x2+x+2=0の解を求め ることはできない。 ゆえに、2つの方程式は共通の実数解をもたない。(x)-0 [2] α=2のとき ②から [22+2+k=0よってk=-60sα=2を①に代入しても このとき、2つの方程式は2x2-6x+4=0, x2+x-6=0 0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな それぞれ x=1,2; x=2, -3 よって、2つの方程式はただ1つの共通の実数解 x= 以上から =-6, 共通解はx=2の よい。 注意 上の解答では,共通解 x=αをもつと仮定してやkの値を求めているから, 求めた値に対して,実際に共通解をもつか、または問題の条件を満たすかど うかを確認しなければならない。

解決済み 回答数: 2
数学 高校生

解の公式の形において2枚目の3問目の様に3つとも約分可能でなければ約分してはいけないのでしょうか 2枚目の追加画像は分母「2」と分子「4」と「1」なので約分せずそのままなのでしょうか

15:56 6月10日 (月) detail.chiebukuro.yahoo.co.jp その他の回答 (2件) tytytyさん 2010/6/24 15:43 約分ってのは 分子と分母に同じ数で割ることなので (1)の分子は (9±√/21)で分母は6ですね なので仮に3で約分 (3で分子と分母を割る)すると 分子は (9±√21)÷3 となりさらに分数ができてしまいます。 よって (1) は約分できません。 同じように(2)も約分できません。 しかし解答が約分してあるなら 5/4(2√/23)/4と分けて 5/4±(√23)/2とするしかありません。 参考になる 1 men********さん ありがとう 感動した 面白い 0 新しい順 51% 2010/6/24 15:34 あなたの意見の「3つとも約分可能でなければ約分してはいけない」は正解です。 【2】 の約分は出来ません。 約分するのであれば、分母を2つに分けて 5/4(2/23)/4と分ければしてもよいです。 解答が間違っているか、5の部分が、 別の偶数だったりするのではないでしょうか。 参考になる ありがとう 感動した 0 0 0 あわせて知りたい ④ TOYOTA ふさがりがち。 自動開閉がうれしい! SIENTA 家族で笑った! シエンタ! トヨタ自動車株式会社 面白い

解決済み 回答数: 1