学年

教科

質問の種類

数学 高校生

微分係数が存在するかしないかって 右側極限の微分と左側極限の微分が合うか合わないかのみによるという理解でよいですか?

連続で [+] (②) 連続 T 分 ■数 60 関数の連続性と微分可能性 /関数f(x)=x^2/x-2|はx=2において連続であるか、 微分可能であるかを調べ p.106 基本事項 62 検討 [例題] f(x)がx=αで連続limf(x)=f(α) が成り立つ f(x) が x=αで微分可能微分係数 lima+h)-S(α) h オー lim f(x) X 2+0 これらの極限について調べる。 f(x)はx=2の前後で式が異なるから、例えば連続性については、右側極限 20, 左側極限x2-0 を考え,それらが一致するかどうかを調べる。 =limx2(x-2)=0 x-240 lim f(x) x-2-0 =lim{-x2(x-2)}=0 x2-0 また, f(2)=0 であるから lim f(x)=f(2) X-2 よって, f(x)はx=2で連続である。 次に = lim h+0 ƒ(2+h)-f(2) h lim h-0 f(2+h)-f(2) h =lim h→+0 h→+0 =lim(2+h)=4 ya lim h-0 (2+h)³h-0 h (2+h)²(−h)-0 h =lim{-(2+h)"}=-4 h-0 h→+0とん → 0 のときの極限値が異なるから, f' (2) は存在しない。 すなわち, f(x)はx=2で微分可能 ではない。 微分可能連続の利用 f(x)がx=αで微分可能x=α で連続 y=f(x) (2) f(x)= X 0 107 00000 F p.97 基本事項■ が成り立つ。 よって、上の例題のような問題では,微分可能性から 先に調べてもよい(「微分可能」がわかれば、極限を調べなくても 「連続である」という結論を出すことができる)。 また、⑩の対偶「f(x)がx=4で連続でない⇒xaで微分 「可能でない」 も成り立つ。 x 1+2 + が存在する。 4A= を用いて、絶対値をはず A (A20) -A (A<0) ◄f(2+h)-(2+h)²|h|| ん→ +0のとき >0 ん→-0のとき <0 に注意して、 絶対値をは ずす。 練習 次の関数は, x=0 において連続であるか, 微分可能であるかを調べよ。 260 (x=0) (1) f(x)=|x|sinx (x=0) 微分可能 [(1) 類 島根大〕 p.115 EX 48 3 章

回答募集中 回答数: 0
数学 高校生

青の線の部分で何故絶対値がつくのかが分かりません良ければ教えてください

266 例題154 連続と微分可能性 次の関数はx=0で連続であるか。 また, x=0で微分可能であるか。 1 x2 sin 11/12 1 RE (x=0) x (x=0) [xsin x (x=0) 0 (x=0) (1) f(x)= 指針連続,微分可能の定義に従って考える。 f(x) がx=α で連続 ⇔ 答案 (1) x→0 ある。 x=αで微分可能 lim h0 微分可能なら連続であるから、まず微分可能性から調べる。 f(0+h)-f(0) f(h) 1 = sin h h h ん→0のとき、この極限は存在しないから, f(x) は x=0 で微分可能でない。 x=0のとき,0≦xsin limf(x)=limxsin =0 x→0 (2) g(x)= limf(x)=f(a) GA-M =lim x→0 x→a 11/12/≦lxl, limlxl=0であるから x→0 Ania 1 x→0 x limf(x)=0=f(0) が成り立つから, f(x)はx=0 で連続で f(x)=1x (1/2-xsin 0 f(a+h)-f(a) h xsin 1 ...... 21 習 154 関数f(x)=√|x| は, x=0で連続であるが A x=0 における微分係数は存在しないことを 示せ。 154 関数f(x) を B g(x)-g(0) g(x) 1 (2) g'(0)=lim =limxsin x→0 x x-0 x ① により,g'(0) = 0 が成り立つから,g(x)はx=0 で微分 可能である。 したがって,g(x)はx=0 で連続である。 が存在 証 ***** h→0のとき sin は振動する。 h はさみうちの原理。 (p.235 参照 ) 注意 (1) のように、連 続であっても、 微分可 能とは限らない。 RUSOCIO 100 y=√x

未解決 回答数: 1
数学 高校生

0が含むか否かはどういう基準ですか?

318 基本例題188 関数のグラフの概形 (2) ・・・ 対称性に注目 ①①0 関数 y=4cosx+cos 2x (-2≦x≦2π) のグラフの概形をかけ。 基本 187 指針 関数のグラフをかく問題では, 前ページの基本例題187同様 定義域, 増減と極値、凹心 と変曲点, 座標軸との共有点, 漸近線 などを調べる必要があるが,特に, 対称性に注 目すると、増減や凹凸を調べる範囲を絞ることもできる。 f(-x)= f(x) が成り立つ (偶関数) グラフは f(-x)=f(x) が成り立つ (奇関数) 解答 ① y=f(x) とすると, f(-x)=f(x) であるから, グラフはy軸 に関して対称である。 この問題の関数は偶関数であり,y'=0, y" =0の解の数がやや多くなるから、 の範囲で増減凹凸を副べて表にまとめ, 0x2におけるグラフをy軸に関して に折り返したものを利用する。 =–4sinx(cosx+1) =–4(cosx+1)(2cosx−1) 0<x<2πにおいて, y = 0 となるxの値は, sinx = 0 または y' 3" y'=-4sinx-2sin2x=-4sinx-2・2sinxcosx 2倍角の公式。 y=-4cosx-4cos2x=-4{cosx+(2cos2x-1)} 20 : cosx+1=0から x=π y" =0 となるxの値は, cosx+1=0 または2cosx-1=0から(*)の式で, CoSx+120 5 に注意。 sinx, 2cosx-1 の符号に注目。 (E よって, 0≦x≦2におけるyの増減, 凹凸は,次の表のようになる。 (*) - x= お π 3 π " 3 0 3 2 18 +1 π, ↑ π 0 20 3 -3 π *** ++ 軸対称 グラフは原点対称 |53+0 32 π 3″ : y 5 ゆえに, グラフの対称性により, 求めるグラフは右図。 +0 [参考] 上の例題の関数について, y=f(x) とすると よって, f(x) は2πを周期とする周期関数である。 C 5 ◄cos (- (数学ⅡI) 2π 7 (OR) (200 (2)y= 重要 189,190 y=-4sinx-2sin2xを 微分。 - -2π 5 ミル = COS π 3 YA 15 3 f(x+2)=f(x) この周期性に注目し,増減や凹凸を調べる区間を 0≦x≦2に絞っていく考え方でもよい。 ←数学Ⅱ 参照。 70 -3π sink Xの 練習 次の関数のグラフの概形をかけ。 ただし, (2) ではグラフの凹凸は調べなくてよい。 188 (1) y=er-¹ (-1<x<1) ex sin 3x-2 sin 2x+sinx (-75x5) [(1) 横浜国大〕 Op.325 EX161 重要 方程式 指針陰 中 1²2 解答 方程式で は成り立 よって, 8-x²MC 0<x<2. y' = √ y=2 y'=0と また、C 0≤x≤ なる。 よって [ 参考 した 練習 189

回答募集中 回答数: 0
1/4