学年

教科

質問の種類

数学 高校生

このまるで囲ってる2・5って何を意味するんですか? 問題は2枚目の⑶です

直線lと円 K: x+y-8x-6y=0 .... ② B の交点A,Bのx座標は,①,②より,yを 消去して得られる方程式 00 x²+(x+5)-8x-6(-1 1 x + 25)=0 の実数解である。これを解くと 3 9x2+(-4x+25)-72x-18(-4x+25)=0 x-8x+7=0 (x-1)(x-7)=0 x=1,7 条件より, 点Aのx座標がx=1,点Bのx座標が x=7 であるから, ①より 4y-3=- 1/(x-4)を展開 せずにそのまま円 K の方程式 (x-4)+(y-3)"=52 に代入 (x-4)2+{-1/(x-1)}= (x-4)²=9 x-4±3 A (1, 7), B(7, -1) y = -. 4 25 x+ 3 A(1, 7), B(7, -1) x=1,7 と計算してもよい。 完答への 道のり 直線OCの傾きから、直線の傾きを求めることができた。 直線lの方程式を求めることができた。 直線 l と円 K の方程式を連立させて、2交点 A,Bのx座標を求める 2次方程式を立てることがで ① 2 交点 A, B の座標を求めることができた。 (3) 点Dは第1象限にあるから, 点Dの座 標は (s, t) (s> 0, t > 0) とおける。 AV △ABD は正三角形であるから AD'=BD=AB2 AD=BD2 より (s-1)+(t-7)=(5-7)+(t+1)2 12s-16t=0 3 t= -s AD2 = AB2 より (s-1)+(-7)=(2-5)2) s2 +t2-2s-14t-50=0 ③④に代入して ③ ? s2+(21s)-2s-14・4/4s-50= 0 s2-8s-32=0 A(1, 7) K \C(4,3) <B (7, -1)+ 2点間の距離 2点(x1,y1)(x2,y2)の間の √(x2-x1)+(y2-yl) 線分ABの長さは円Kの 等しい。 6.8 |16s2+9s2-32s-168s-800 25s2-200s-800 = 0

解決済み 回答数: 2
数学 高校生

(1)の解答で(X,Y)を(x,y)にかきかえてとありますが なぜですか?? X=x+p、Y=y+qと書いてあるのでそれがなぜ書き換えられるのかよく分かりません💦

第3章 基礎問 78 第3章 図形 48 一般の曲線の移動 図かけ (1)(i) 点(x,y) をx軸方向にp, y 軸方向に g だけ平行移動し 点を(X, Y) とするとき, x,yをX,Yで表せ. () 曲線 y=f(x) をx軸方向にp, y 軸方向に gだけ平行 移動した曲線の方程式は y-g=f(x-p) で表せること を示せ. (2)(i)(x,y) を直線x=α 2 参考 y=f(2a-X) (X, Y) を (より)に書きかえて①左部木 y= f(2a-x) (2) の (i)において, 点 (X, Y) を直線 y=bに関して対称移動すると,点 (X,26-Y)に移ります。 x=a (20-x,2b-y) (a,b) すなわち, 点 (2a-x, 2b-y) に移り、この点 最初の点(x,y) を結ぶ線分の中点は(a,b) (x,y) になります. y=b (X, Y) これは,「ある点を直線 x=α に関して対称移 (i) 曲線 y=f(x)を直線 r=a に関して対称移動した曲 線の方程式は y=f(2a-x) と表せることを示せ. に関して対称移動した点を (X, Y)とするとき, x, y を X, Yで表せ 79 (1) () 軌跡の考え方によれば, XとYの関係式を求めることが目 精講 標ですから,xとyを消去すればよいことになりますが、 最後に XをxにYを」に書きかえることを忘れないようにしましょ う.それなら、はじめから移動後の点を (x, y) とおけばよいと思うかもし れませんが,それでは移動前の点(x,y) と区別がつかなくなります。この ような理由でおかれた (X, Y) を流通座標といいます。 そのあと直線y=bに関して対称移動することは、もとの点の 点 (a, b) に関する対称点を求めることと同じ」ということです。 図 からわかるように「点対称とは,対称の中心のまわりに180°回転する ことと同じです。 ポイント 曲線 y=f(x) をx軸方向にp, y 軸方向にだけ 平行移動した曲線の方程式は f(x) 曲線 y=f(x) を直線 =α に関して対称移動し た曲線の方程式は (!)(T) 解 答 X=x+p faal Y=y+q だから この()は ↑においてその値を定めた 上にある点。つまり、y=f(x) y+q (X,Y) ときの値がただつに q 注 x=X-p, y=Y-q u(x,y)=f(x)をみたすので定まるということ。 Y-9= f(x-p (X, Y) を (x, y) に書きかえて y-q=f(x-p) (2)(i)右図より y x+X 2 ==a, Y=y 0 XC x=a y= f(2a-x) p x+px 平行移動の公式は「xにを yy-g を代入する」ことだから, 曲線がf(x,y)=0 の形のときは,f(x-p, y-g)=0 が平行移動した曲線 になります(演習問題48) また,この公式は、証明できることがどうで もいいとはいいませんが,まず, 使えるようになることが大切です . 13 x=2a-X,y=Y (i) (x,y) は y=f(x) をみたすので, (x,y) (X,Y) 演習問題 48 x+X |-1|+|y-2|=1 で表される図形を図示せよ.

解決済み 回答数: 1
1/3