学年

教科

質問の種類

数学 高校生

エオカキクケがわかりません。 解答は配布されてないのでわかりません。 エはたぶん0番だと思うのですが、オがよくわかりません。 よろしくお願いします。

太郎さんと花子さんは、次の宿題について考えている。 宿題 全体集合を U, 集合 A, B を Uの部分集合とし、集合Sの要素の個数をn (S), 空集合をで表す。 n(U)=100,n(A)=50,n(B)=30であり, A∩B, AnBΦであるとき,n(AUB)のとり 得る値の最小値と最大値をそれぞれ求めよ。 太郎: A∩B=Φ を表す図は ア で, AnB=Φを表す図は イ だね。 花子: A∩B≠は集合 A∩B に ウ |の要素が属することを, A∩B≠Φは集合 A∩Bに ウ | の要素が属することを表しているね。 ア イ については,最も適当なものを,次の①~③のうちから一つずつ選べ。 ただし、同じ ものを繰り返し選んでもよい。 © ·U. ① -U- -U B B ウ |の解答群 100 ⑩ 少なくとも一つ ① ちょうど一つ ② Bのすべて 太郎: n (AUB) が最小値をとるときは, I ] が最小値をとるね。 n (AUB) が最大値をとるとき オ | が最小値をとるね。 花子:そうだね。宿題について,n (AUB)の最小値はカキで,n (AUB) の最大値はクケだね。 エ オ ] の解答群 (同じものを繰り返し選んでもよい。) ⑩n (A∩B) ① n (A∩B) また, カキ クケに当てはまる数を求めよ。 日本 (配点 10)

解決済み 回答数: 1
数学 高校生

31 ①エについてなのですが、下の写真の青で囲んだところが私が書いたベン図なのですが、AとBのバーの補集合が小さくなるにはABそれぞれの部分集合が小さくて、AとBの補集合が大きくないといけないから、AかつBが最小であってますか? ②オなのですが、これはAの補集合とBの集合... 続きを読む

31 難易度★ 太郎さんと花子さんは、次の宿題について考えている。 宿題 全体集合をU, 集合 A, B をUの部分集合とし、 集合Sの要素の個数をn (S), 空集合をで表す。 n(U)=100,n (A)=50,n(B)=30 であり, ACB, A∩B キΦであるどき, n (AUB)のとり 得る値の最小値と最大値をそれぞれ求めよ。 AとBの共通部分が空集合 太郎: A∩B = を表す図は P00 で, AnBd を表す図は2イだね。 耳の外でBの英語部分が空集合 花子: A∩B キは集合 A∩Bに ウ | の要素が属することを, ACB キΦは集合 A∩Bに (1) ウ の要素が属することを表しているね。 イについては,最も適当なものを,次の~③のうちから一つずつ選べ。ただし、同じ ものを繰り返し選んでもよい。 ① B ウ の解答群 ⑩ 少なくとも一つ ちょうど一つ ②Bのすべて (η(AB) --u-(¯Ã¢b) - 50 花子:そうだね。 宿題について, n (AUB) の最小値はカキで, n (AUB) の最大値はクケ 太郎: n (AUB) が最小値をとるときは,ェが最小値をとるね。 n (AUB) が最大値をとると 21 Wi(ACB)は, オが最小値をとるね。 49 H オ | の解答群(同じものを繰り返し選んでもよい。) n(ANB) ①n (A∩B) また, カキ ケに当てはまる数を求めよ。 (配 n(AUB) カキ B 50/30 50 B 30 529

解決済み 回答数: 1
数学 高校生

・数学 ベネッセ模試 左側が答えで右側が問題です 青字の❓でかいたところからがわからないですよろしくお願いします

8 88 配点 (1) 2点(イ) 2点 (ウ) 2点 (2) 4点 解答 (1) [2(x-2)>x+a lx-1|<3 ①より 2x-4x+a x> a+4 ②より -3<x-1<3 -2<x<4 ①と②が共通範囲をもたないための条件は 4Sa+4 よって a≧0 (2) [2] 太郎さんと花子さんは次の 【宿題】 について考えている。 太郎さんと花子さんの次の 会話を読んで,下の問いに答えよ。 【宿題】 次の連立不等式を解け。 ただし, αは定数である。 絶対値を含む不等式の解 >0のとき |x|<c-c<x<e [2(x-2)>x+a ・① [x-1| <3 -2 4a+4 x ●等号がつくことに注意する。 x+4 (4) 2 <x<4 (ウ) 0 太郎 不等式①の解は, α を用いて表すと (ア 不等式 ② の解は, (イ) になる ね。 la+4の値と-2との大小関係に よって場合分けをする。 花子:そうだね。 不等式①の解には,a という文字が入っているから,αの値によって ①は x>a+4,②は2<x<4 である。 < 0 のときのこれらの共通範囲を求める。 ?i 2 <a+4 <4 すなわち 6 <a< 0 のとき 連立不等式の解は a+4<x<4 ( +4≦-2 すなわち as-6のとき 連立不等式の解は -2<x<4 (i), (ii)より, 求める解は 6 <a<0 のとき a+4 <x<4 S-6のとき -2 a+4 4 -27- a+4=-2 は (i), (ii) のいずれか に入っていればよい。 a+4 2 -2<x<4 圈 6<a<0 のとき a+4 <x<4 a-6のとき -2<x<4 完答への 道のり AC α+4の値と2との大小関係によって場合分けをすることができた。 B それぞれの場合において、 連立不等式の解を求めることができた。 連立不等式の解が変わるね。 太郎: 不等式①と②を同時に満たすxの値が存在しないようなαの値の範囲は, (ウ) だね。 このとき, 連立不等式は解をもたないね。 a≥ 花子: あとは,< (ウ) のときに, 連立不等式の解を考えればいいね。 (1) (イ) ] にあてはまる式を, (ウ) にあてはまる数をそれぞれ答えよ。た だし、解答欄には答えのみを記入せよ。 (2) a (ウ) のときに,αの値によって場合を分けて, 【宿題】 の連立不等式を解け。 (配点 10)

解決済み 回答数: 1
1/23