学年

教科

質問の種類

数学 高校生

(2)を解答とは違う、垂直条件を二回使って連立方程式を作る解き方をしましたが、2枚目の右下のbの値が違います。どこで間違えたのでしょうか。 何回も見直しましたが、どこで間違えているかわかりませんでした…

• 10 外心 三角形ABCの3辺の長さをAB=4, BC=3, CA=2 とする.この三角形の外心を0とおく. (1) ベクトル CA と CB の内積 CA・CB を求めよ. (2) CO=aCA + 6CB をみたす実数 α, b を求めよ. 外心の求め方 外心の定義 (OA=OB=OC) を用いて求めてみよう. 例題では|OA|=|OB2=|OC|2 を CA, CB, a, b で表して a, b を求め ればよいのであるが,素直にOA=CA-CO=(1-4) CA-6CBとして 計算すると式が膨れてしまう. (信州大・理一後) |OA|=|CA-CO|=|CA|2-2CA・CO4 | CO 2 としておくことがポ イントで,これがCO2に等しいことから2CA・CO-|CA | となる。 これに CO=aCA+bCB を代入する(aとbの関係式が得られる)。 0 B 同様に|OB|=|OCからもαとの関係式が得られ,この連立方程式を解けばよい. 解答 (1)|CA-CB|=|BA|2であるから, |CA2-2CA・CB+|CB|=|BA|2 ..22-2CA・CB+32=42 CA·CB= 22+32-42 2 3 == 2 e CA ACT=0 A (2) 0から A, B, Cまでの距離が等しいので, |OA|=|OB|=|OC|2 ..|CA-CO|=|CB-CO|=|CO|2 .. |CAP-2CA・CO+|CO|=|CB|2-2CB・CO+|CO|=|CO|2 最左辺 =最右辺, 中辺=最右辺より, 2CA·CO=|CA|2, 2CB・CO=|CB|2 これらにCO=CA+6CB を代入すると, 2(a|CA2+6CA•CB)=|CA|2, 2 (aCA•CB+6|CB|2)=|CB |2 (1)で求めた値などを代入して, 3 2{a·4+6 (-2)}-4, 2{a⋅(-1)+6-9)=9 ∴.8a-3b=4 .......... ①, -3a+186=9 ②÷3よりa=66-3...... ③ で,これを①に代入すると 8(66-3)-3b=4 28 .. 45b=28 .. b = 45 28 11 これを③に代入して, α=6· -3= 45 15 COR=0 C. (c) 問題文の CA, CB を見て,Cを 始点に書き直す。 =0 CA (CA - PCA + CD) - CAP) CA +&CB=0 この式は次のようにして導くこ ともできる. 2 A 0 CACO=CA・CO・cos/Cである. 0 から CAに下ろした垂線の足を Hとすると,HはCAの中点で Cocos ∠C=CH=CA/2 よって, CA·CO=CA·CH=CA2/2 CB・COも同様. 10 演習題(解答は p.27 ) △ABC において AB = 1, AC=2と1 /BAC=

回答募集中 回答数: 0
数学 高校生

空欄テ,ト、ナ,ニ、ヌ,ネ,ノについてです。 2枚目にも書いているように、私は両辺に6を掛けてから計算したのですが、項数求めるところでn²>1428となり答えがあいません。何が間違えているのか分からないのでよろしくお願いします。見にくくてごめんなさい。

数学ⅡI・数学B 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 第4問 (選択問題) 次のように、1から始まる1個 2個 3個の奇数の列を順に並べてできる 数列 1, 1, 3, 1, 3, 5, 1, 3, 5, 7, 1, 3, 5, 7, 9, 1, ... U 5個 1個 2個 3個 4個 を {an} とする。 この数列を、次のように群に分け、順に第1群, 第2群,第3群, ..….とする。 1 |13|1,3,5 |1,3,5,7|1,3,5,7,91, ….. 第1群 第2群 第3群 第4群 第5群 ここで,nを自然数とするとき,第n群はn個の項からなるものとする。また, jkを自然数とし、第n群に含まれる項α)と同じ値の項が,第1群から第n群ま でにちょうどk個あるとき, 第n群に含まれる項a, を 「k回目に現れる α;」のよ うに表現する。例えば、第5群の2番目の項である3は数列{an}の第12項であり, 「4回目に現れる3」 のように表現する。 1.3.5.7 +2+2 (配点20) (1) 第n群の最後の項をnを用いて表すと は数列{an}の第 である。 とき回目に現れる1は数列{an}の第 21 { n (l+n) Shinti 10回目に現れる1は数列{an}の第市 項である。また,kを自然数とする 第9項さいごは、anの3×9×10=45 1 1 -k²- オ) カ = k (k-1) + 1 = = = K²=-=- k + 1 項である。 第n群に含まれる項の和は に現れる1までの和は 1 ケ (-1)(1+R-1)+1 -k³ 項である。 +1 -k² + =1+(n-1)2=20-2+1 であり, 1回目に現れる = n 1 サ =20-1 であるから、数列{an}の初項からk回目 n(x+2n-1)=½nxxn = n² =k+/ =k+ */ //(k-1)(2R-2+1) (数学ⅡⅠ・数学B 第4問は次ページに続く。) -32 + (k-1)k (2k-1) 11 ( ア の解答群 On-1 1 ク (n-1)² Ⓒ/n(n-1) ②n+1 76 (2) を自然数とするとき、1回目に現れる3は第 の解答群 (同じものを繰り返し選んでもよい。) ①n² ② (n+1)^ Ⓒ/ n(n+1) ⑤/1/21(n+1 +1)(n+2) ⑩ 1/12n(n-1)(2n-1) ⑦/1/n(n+1)(2x+1) ③ / (n+1)(n+2)(2n+3 ) あり, N ヌネノである。 3 2n-1 2022 ({R-ÉR) (²k-1)/12138 2 2 ~ 3 k²³² - / k²= 1/k² + (k = {K² - {k² + ék 110 21 220 2310 目の項であり、数列{an}の第 チ ·(1+0) 31+z²+2 f (3) 数列{an}の初項から第n項までの和をSとする。 S>2023 となる最小のn をNとすると、数列{an}の第N項 αN は第 群のナニ番目の項で 第群に含まれる項の和r². 初項から最後までの保和は、 ////(m+1)(2m+1 数学ⅡⅠ・数学B -1² + 42n+1 タ グマ ス ·1+ 群の to 番 2 項である。 17万 {m(mer) (2mi+1) >2023 6m(+1)(2nit1) (m+1)(24ct() >1 m=18のとき12654> 121 m=1710710 <120 x 1934×12 1386

回答募集中 回答数: 0
数学 高校生

20の(1)の角BACを求めるところで質問です 解答とはちょっと違くて β-α/γ-α=√2/2(cos5/4π+isin5/4π)となったのですが極形式のθ回転は右回りを指しているのでこのようになりますか? そういうことなら問題を解く時、点の位置をある程度把握する必要... 続きを読む

58 基本例題 30 線分のなす角、平行・垂直条件 複素数平面上の3点A(α), B(B), C(y) について (1) α=1+2i,β=-2+4i, y=2-ai とする。 このとき, 次のものを (ア) a=3のとき, ∠BAC の大きさと △ABCの面積 (イ) α=16のとき, CBA の大きさ (2) α=-1-i, β=i, y=b-2i (b は実数の定数) とする。 (ア) 3 点A,B,Cが一直線上にあるように, bの値を定めよ。 (イ)2 直線 AB, AC が垂直であるように, 6の値を定めよ。 指針 ∠BACの偏角 Bay = arg B-α Y-α (1)(ア) (1) B-a (ア) △ABCの面積は 1/12AB・ACsin <BAC また であるから, a-B Y-B = r-a β-a r-a に注目する。 = を計算し、 極形式で表す。 (2) pp.41 の基本事項 ③ ② ③ が適用できるように,まずy-a B-a r-a が実数 (∠BAC = 0 または ² ) B-α 解答 (1) (ア) α=3のとき, y=2-3i であるから Y-α 2-3i-(1+2i) B-a -2+4i-(1+2i) よって, ∠BACの大きさは r-a が純虚数 ∠BAC= B-a BAC=4) の計算で出てくる B-α, r-αの値を使うとよい。 (1-5i)(-3-2i) (-3+2i)(-3-2i) = √2 (cos+isin) CHART 線分のなす角、直線の平行・垂直偏角 ∠Bay=arg- 1-5i -3+2i =-1+i 3 △ABC=12AB・ACsin <BAC -—-—- √ √(-3)² + 2² ₁/18 11 12 B(B) p.41 3 0 A(a) ここで, AB=B-al, AC ∠Bay A(a) C(y) を計算し Big r-a B-a a-B r-B a=16 のとき, -ba 分母の実数化。 偏角を調べる。 = よって, ∠CBA y-a (b-2i)- B-a as litte i-(- (b+1-i (1+2i) 3点A, B, C となることであ よって イ) 2直線AB, 検討 ベクトルの となるように,bの値を定復素数平面上の点 いて解くこともで 1) (1) A(1, 2), B. 1+2i-( 2-16i-C = ここでは,偏角 (3-2i)(- 4(1-5i)0 習 00 √ 8 COS- 数となることで b= よって b=- CO (ア)についても 2) A(-1, -1) (ア)kを実数 よって (イ) AB・AC= 0≤ZCBAS 複素数平 (1)a= (2) α= 求め

回答募集中 回答数: 0
1/4