学年

教科

質問の種類

数学 高校生

(2)を解く時どうしたらこの方法で解くって思いつきますか?なんで割り算したら答えが求めれるんですか?

出題されます。 含む単独に 1+√3i I= ,y=- 2 1-√31 (2) I= このとき、次の式の値を求めよ. 3+√3i 2 より2x-3=√3i する 3+√3i (7) x+y (1) xy (ウ)+y3 (エ) y すなわち, 両辺を平方して, 4x²-12x+12=0 x2-3x+3=0 を解に x=- 2 もつ2次方程式 IC + I y (2)m= 3+√3i 2+3+2 わり算をする 2 のとき,r-4x2+6x-2の値を求めよ. x²-3x+3)x4 -4x2+6x-2 -33 +3.2 3x3-7x2+6x 3x3-9x2+9x 2x²-3x-2 精講 2x²-6x+6 3x-8 (1) 2つの複素数a+bi, a-bi(a, bは実数)のことを,互いに共 役な複素数といいます。 このx,yは,まさに共役な複素数です。 共役な複素数2つは、その和も積も実数というメリットがあるの で, 対称式の値を求めるときにはまず和と積を用意します。 (2) このような汚い (?) 数字をそのまま式に代入してしまってはタイヘンで す. そこでこのx を解にもつ2次方程式を作り, わり算をするか, 次数を下 げるかのどちらかの手段で計算の負担を軽くします. (I・A8) 上のわり算より, 4-4x2+6x-2=(x²-3x+3)(x2+3x+2)+3x-8 このxに与えられた数値を代入すると, '-3x+3=0 となるので (与式) =3 -3(3+√31)-8-3√31-7 8= 2 2 (別解) (次数を下げる方法) 解答 2 基本対称式 -=1 4 基本対称式 (1)(x+y=1+3i+1-3-1 2 (イ)ry=1+√3i1-√3i_1-32 2 2 (ウ)+y=(x+y-3xy(x+y) =1-3・1・1=-2 I_x'+y^=(x+y)2-2.xy <対称式は基本対称式 で表せる (エ) y + =-1 x y xy xy <対称式 実はこのx,yはタダ者ではありません。 参考 x+y=1, ry=1より,x,yを解にもつ2次方程式は t-t+1=0 (21) 両辺に t+1 をかけると +1= 0 ∴.t=-1 よって,r'=y'=-1. すなわち,r=y=1 このように,あるnに対して, "=1となるは x=3x-3 だから 4-4x2+6x-2=(3x-3)2-4x2+6x-2 =5x2-12x+7=5(3-3)-12x+7 =3r-8-3(3+y3i)-8=3√gi-7 2 2 ポイント 他にも, x= --1±√3i 2 (x=1), x=±i (x^=1) などがよく入試に 演習問題 16 I. 共役な複素数の和と積は実数 Ⅱ. 複素数を整式に代入するときは、その複素数を にもつ2次方程式を作り, 整式をその2次式でわ て, その余りに代入する (1) 次の問いに答えよ. r=1+i liのとき

解決済み 回答数: 1
数学 高校生

私が解いているのはpracticeなのですが、 基本例題で用いた方法は利用できなくて、、、 どのように答えを求めたら良いですか?? 分かる方教えてください!🙇‍♀️

基 例題 55 高次式の値(割り算を利用して次数を下げる) P(x)=x+3x2+x+2について,次の問いに答えよ。 (1) x=-1+i のとき, x2+2x+2=0 であることを証明せよ。 2 P(x) を x2+2x+2で割った商と余りを求めよ。 5. (3) P(-1+i) の値を求めよ。 ③ 基本 10 基本 60 CHART & THINKING (1)(2)(3)のヒント (3)でP(-1+i) の値を求めるのに, x= -1 + i を直接代入すると計算が煩雑。 そこで,(1),(2) をヒントとして利用しよう。 (2)で求めた商Q(x) と余り ax +6 を用いると, 割り算の基本公式から P(x)=(x2+2x+2)Q(x)+ax+b となる。ここで, (1) の結果をどのように利用すればよいだろうか? りをそれ りを考え 割った余 の多項 る。 R を代 解答 うしの (1) x=-1+i から x+1=i 両辺を2乗して これを整理して (x+1)=-1 x2+2x+2=0 2章 8 剰余の定理と因数 x +1 x2+2x+2)x+3x2+ x +2 ◆iを消去。 (3) P(x)の次数を順次下 げていく方法もある。 x2+2x+2=0 から x2=-2x-2 よって P(x)=x.x2+3x²+x+2 =x(-2x-2) +3(-2x-2)+x+2 =-2x2-7x4 別解 x=-1+iのとき x2+2x+2=(-1+i)+2(-1+i)+2 =1-2i+i-2+2i+2 =1-1=0 (2)右の計算から 商 x+1 x+2x2+2x 余り 3x x2-x+2 (3)(2)から x2+2x+2 P(x)=(x2+2x+2)(x+1)-3x 0=-3x これに x=-1+i を代入すると, (1) の結果から P(-1+i)=0-3(-1+i) =3-3i =-2(-2x-2)-7x-4 =-3x ← (1) から x=1+iのと きx2+2x+2=0 INFORMATION 虚数単位を消去するための工夫 入試などでは, (3) だけが単独で出題されることも多い。 そういう場合も遠回りに感じ るかもしれないが, x+1=iと変形して両辺を2乗すると, (1) の形のように虚数単位 がなくなり実数係数の2次方程式となるので,計算がスムーズになる。 RACTICE 55 P(x)=3x3-8x²+x+7 のとき,P(1-√2i) の値を求めよ。

解決済み 回答数: 1
1/21