学年

教科

質問の種類

数学 高校生

なぜ右の例題では実数条件について考えるのに、左では考えないんですか?ご教授おねがいします🙇

3章 重要 例題 129 領域の変換 00000 | 実数x, y が 0≦x≦1,0≦y≦1 を満たしながら変わるとき,点(x+y, x-y)の 動く領域を図示せよ。 指針 x+y=x 解答 基本110, 118 ①, x-y=Y ② とおくと,求めるのは点(X,Y) の軌跡である。 ここで,x,yはつなぎの文字と考えられるから,x,yを消去して,X,Yの関係式 を導けばよい。 CHART 領域の変換 つなぎの文字を消去して,X,Yの関係式を導く x+y=X,x-y=Yとおくと X+Y X-Y x= 2y= 2 x,yをX,Yで表す。 重要 例 例題 130点(x+y, y) の動く領域 207 00000 実数x, y x2+y2 ≦1 を満たしながら変わるとき,点(x+y, xy) の動く領域 を図示せよ。 指針 x+y=X, xy = Y とおいて, X, Yの関係式 を導けばよい。 ①条件式x2+y'≦1 を X,Yで表す。 →x'+y=(x+y^2-2xy を使うと しかし,これだけでは誤り! X2-2Y≤1 ② x,yが実数として保証されるようなX,Yの条件を求める。 重要 129 →xyは2次方程式2-(x+y)t+xy=0 すなわち f-Xt+Y=0 の2つの解で あるから,その実数条件として 判別式 D=X2-4Y≧0 ① 実数条件に注意 0x1,0≦y≦1 に代入すると X=x+y, Y=xy とおく。 X+Y_ 0≤ 2 -XSYS-X+2 .X-Y 2 よって [X-2Y X 変数を x, yにおき換えて |-xMy≦-x+2 x-2≦x≦x <OX+Y2 解答 x2+y's1から (x+y)²-2xy≦1 すなわち X2-2Y≦1 ⇔-xs-X+2 したがって 0≤X-Y≤2 X² 1 2 ...... ① ⇔ Y≦X かつ また, x, yは2次方程式2-(x+y)t+xy=0 すなわち X-2≦Y ⇔X-2≦x≦X したがって 求める領域は, 右の図の斜線部分。 ただし, 境界線を含む。 ------- <xy 平面上に図示するか ら,X,Yをxyにおき 換える。 X2 ここで f2-Xt+Y=0 の2つの実数解であるから, 判別式をDとす ると D≧0 D=(-X)-4・1・Y=X2-4Y よって, X2-4Y0 から <2数α. β に対して p=a+β, q=aβ とすると, a, βを 解とする2次方程 式の1つは x-px+q=0 1 不等式の表す領域 [e] y ② 4 125x=1 領域の変換 ある対応によって、座標平面上の各点Pに, 同じ平面上の点Qがちょうど1つ定まるとき、 ①,②から 変数を x, y におき換えて 2 2 X² 1 SY≤ X² 検討 この対応を座標平面上の変換といい, Qをこの変換による点Pの像という。 座標平面上の変換によって, 点P(x, y) が点Q(x, y) に移るとき、この変換を f: (x, y) → (x, y) のように書き表す。 2 1-1 Sys* この例題は、座標平面上の正方形で表される領域内の点をf(x,y)(x+y,x-y) に よって変換し,その像の点全体からなる領域 を求める問題である。 具体的な点をこのf で変換してみるとそのようすがつかめる。 右 の図では、変換のようすがつかみやすいよう に2つの座標平面で示した。 34 Ztava y S₁ 1 (0, 0)(0, 0). (1, 0)-(1, 1), ▲ (1, 1)(2, 0), (0, 1)(1, -1), 0 2' (1/12 1/2) (10) 練習 実数x, y が次の条件を満たしながら変わるとき, 点 (x+y, x-y) の動く領域を図 ③ 129 示せよ。 x+y=X, xy=Y が実数であったとしても,それがx+y'≦1 を満たす虚数x,yに対応し た X,Yの値という可能性がある。 例えば,x=- 数), xy = 1 1 +y= 2 y=1/21-1/2 のとき x+y=1(実 2 (実数)で,x2+y2≦1 を満たすが x, yは虚数である。 このような(x,y) を 除外するために 実数条件を考えているのである。 練習 座標平面 130 る 斜線部分。ただし、境界線を含む。 したがって、求める領域は、右の図の -√2 √√2 1とす るとx=2 検討 実数条件(上の指針の2)が必要な理由

解決済み 回答数: 1
数学 高校生

真ん中のあたりの丸をつけたところがわかりません

* つま 9 Think 例題 B1.48 漸化式と図形 ( 2 ) 右図のように,辺の長さが1である正三角 形からスタート(ステップ1) し, 多角形の各 辺を3等分し、3等分された辺の長さに等し 「考え方 解答 1つの辺に着目すると, になる.. 正三角形をその辺の真ん中に, 多角形の外 ステップ1 ステップ2 ステップ3 側に付加し,新たな等しい長さの辺をもつ多角形を作る操作を繰り返す. ステップの操作で作られる多角形をTとするとき, MADY 400/50/ (1) 多角形 Tに含まれる辺の個数 α および1辺の長さl, をそれぞれn を用いて表せ. (2) 多角形 T の面積 S を n を用いて表せ. ステップ/ (1) am は,α=3,公比4の等比数列より mny ln は, l1=1,公比の等比数列より、 3 漸化式と数学的帰納法 より, Sn+1=S+ 1/3 √3e₂ 4 Sn ズ (2) 多角形T+1 は, 多角形 T, に, 1辺の長さln+] の正 三角形がT" の辺の数、つまり, am 個加わる. 1辺の長さがl+1 の正三角形の面積は, 1 √√3 12/2xem1x -ln+1= 2 = √3 lut ² 2 - ln + 1² Xan S₁= Si3 より n=2のとき. /3 == へとなり、辺の数が4倍になり1辺の長さ ステップ S.-√3+2√3 (4)¹¹-√3+ n_l√3/4\k-1 = 4 12 9, k=1 -√3,3/31 (1) 4 20 Sn= 5 - 2 これは n=1のときも成り立つ. よって, an=3.4-1 1\n-1 ² 5 2√/33√/3 (1)-1 20 9 = √√3 √3 (1-(-)) √√3 12 1-4 2√3/3/3/4"-1 20 9, /3 (111) 12 Anjur **** 2n 3√3 (1) X3-4-¹-S.+13 (4) S...-S. + b₂ x 1. の種√3 より, = Sn+ ×3.4"=S+ 4 19 Sn+1-Sn-bn (鳥取大・改) B1-93 XPLO 隣接項S, S+1 の 関係を調べる. ln+1 -ln+1 第1章 Th ステップル S は1辺の長さ1 の正三角形の面積

解決済み 回答数: 1
1/3