学年

教科

質問の種類

数学 高校生

共通テストデータの分析です。 解答解説の4箇所について理解できなかったので教えていただけると幸いです。

100) X 数学Ⅰ・数学A (2) 太郎さんは、図1のS大回転のリタイア率R の最大値が大きすぎることを 不思議に思い, S大回転の14 レースを調べてみた。 すると, AとBの2レー スは天候不良のためレースが途中で打ち切られ, 打ち切られた後の選手の人数 を完走できなかった人数に含めていた。 そこで, 太郎さんは,出走予定の人数 を X, 完走できなかった人数をY, 打ち切られたことで出走できなかった人数 100 (Y-Z) X-Z をZとして,新しいリタイア率R' (%) を, R' = - で定義した。 その結果, A については、R = 51.7だったのがR' =5.2 になり, B について は,R = 53.7 だったのが R' = 34.1 となった。また,AとBを除く 12 レース については,RとR' の値は等しくなった。 R' R= 図 2 は, S 大回転 14 レースのリタイア率Rと新しいリタイア率R'の箱ひげ 図である。なお,R' の第1四分位数はちょうど 10,R'の中央値は 20 より少 し大きい値であり, R' の第3四分位数は25より少し小さい値である。 ただし、 14個の R の値に同じものはなく, 14 個の R' の値にも同じものはない。 100% x 100(Y-2) X-8 2 0 20 30 40 50 (%) 図2 S大回転のリタイア率Rと新しいリタイア率R' の箱ひげ図 (数学Ⅰ・数学A 第2問は次ページに続く。) R' = 10

回答募集中 回答数: 0
数学 高校生

共通テストデータの分析です。 解答解説の4箇所について理解できなかったので教えていただけると幸いです。

100) X 数学Ⅰ・数学A (2) 太郎さんは、図1のS大回転のリタイア率R の最大値が大きすぎることを 不思議に思い, S大回転の14 レースを調べてみた。 すると, AとBの2レー スは天候不良のためレースが途中で打ち切られ, 打ち切られた後の選手の人数 を完走できなかった人数に含めていた。 そこで, 太郎さんは,出走予定の人数 を X, 完走できなかった人数をY, 打ち切られたことで出走できなかった人数 100 (Y-Z) X-Z をZとして,新しいリタイア率R' (%) を, R' = - で定義した。 その結果, A については、R = 51.7だったのがR' =5.2 になり, B について は,R = 53.7 だったのが R' = 34.1 となった。また,AとBを除く 12 レース については,RとR' の値は等しくなった。 R' R= 図 2 は, S 大回転 14 レースのリタイア率Rと新しいリタイア率R'の箱ひげ 図である。なお,R' の第1四分位数はちょうど 10,R'の中央値は 20 より少 し大きい値であり, R' の第3四分位数は25より少し小さい値である。 ただし、 14個の R の値に同じものはなく, 14 個の R' の値にも同じものはない。 100% x 100(Y-2) X-8 2 0 20 30 40 50 (%) 図2 S大回転のリタイア率Rと新しいリタイア率R' の箱ひげ図 (数学Ⅰ・数学A 第2問は次ページに続く。) R' = 10

回答募集中 回答数: 0
数学 高校生

共通テストデータの分析です。 解答解説の4箇所について理解できなかったので教えていただけると幸いです。

100) X 数学Ⅰ・数学A (2) 太郎さんは、図1のS大回転のリタイア率R の最大値が大きすぎることを 不思議に思い, S大回転の14 レースを調べてみた。 すると, AとBの2レー スは天候不良のためレースが途中で打ち切られ, 打ち切られた後の選手の人数 を完走できなかった人数に含めていた。 そこで, 太郎さんは,出走予定の人数 を X, 完走できなかった人数をY, 打ち切られたことで出走できなかった人数 100 (Y-Z) X-Z をZとして,新しいリタイア率R' (%) を, R' = - で定義した。 その結果, A については、R = 51.7だったのがR' =5.2 になり, B について は,R = 53.7 だったのが R' = 34.1 となった。また,AとBを除く 12 レース については,RとR' の値は等しくなった。 R' R= 図 2 は, S 大回転 14 レースのリタイア率Rと新しいリタイア率R'の箱ひげ 図である。なお,R' の第1四分位数はちょうど 10,R'の中央値は 20 より少 し大きい値であり, R' の第3四分位数は25より少し小さい値である。 ただし、 14個の R の値に同じものはなく, 14 個の R' の値にも同じものはない。 100% x 100(Y-2) X-8 2 0 20 30 40 50 (%) 図2 S大回転のリタイア率Rと新しいリタイア率R' の箱ひげ図 (数学Ⅰ・数学A 第2問は次ページに続く。) R' = 10

回答募集中 回答数: 0
数学 高校生

ソタチツとセとテが分かりません どなたかわかるかたいらっしゃいましたら教えて頂きたいです

3 甲府地方気象台は, 富士山の初冠雪日 (以下, 初冠雪日) の日付を発表している。 初冠雪とは, 「山の一部がゆき等の固形降水により白くな った状態が初めて見えたとき」 とされている。 甲府地方気象台が発表している日付は普通の月日形式であるが,この問題では該当する年の1月1日を「1」 とし, 12月31日を「365」(う るう年の場合は「366)とする「年間通し日に変更している。 例えば, 2月25日は、1月31日の「31」に2月25日の25を加えた「56」と なる。 なお, 小数の形で解答する場合は,指定された桁数の一つ下の桁を四捨五入して答えよ。 また、 必要に応じて, 指定された桁まで ⑩にマーク せよ。 (1) 図1は1990年から2019年までの30年間の初冠雪日を箱ひげ図にまとめたもの である。 次の⑩~④のうち, 図1から読み取れることとして正しいものはサ である。 の解答群 解答の順序は問わない。) ス で と サ ⑩ 初冠雪日の範囲は100日以上である。 ① 初冠雪日の四分位範囲は15日以上である。 ② 30 年間で初冠雪日が最も早かった年は,7月に初冠雪が観測されている。 ③ 30 年間で初冠雪日が最も遅かった年は, 10月27日に初冠雪が観測されている。 ④ 10月1日以降に初冠雪が観測された年は, 15以上ある。 (2) 甲府地方気象台は, 甲府市の初雪の観測日 (以下, 初雪の観測日) の日付も発表している。 初 雪とは, 「寒候期 (10月から3月までの時期)に初めて降る雪のこと」とされている。 0 220 230 240 250 260 270 280 290 300 初冠雪日 図2は1990年から2019年までの30年間の初冠雪日を横軸にとり, 各年における初雪の観測 日から初冠雪日を引いた日数 (以下, 初雪までの日数) を縦軸にとって散布図にまとめたものであ る。なお,散布図には補助的に切片が330,360, 390 である傾き -1 の直線を3本付加している。(出典:甲府地方気象台のWeb ページにより作成) 図2 初冠雪日と初雪までの日数の散布図 また、次の表は30年間の初冠雪日と初雪までの日数のデータをまとめたものである。 ただし, 初冠雪日と初雪までの日数の共分散は,初冠雪日の偏差と初雪までの 日数の偏差の積の平均値である。 (i) 初冠雪日と初雪までの日数の相関係数に最も近い値は ス ある。 220 230 240 250) 260 270 280 290 300 310 図1 初冠雪日の箱ひげ図 (出典: 甲府地方気象台のWeb ページにより作成) について,最も適当なものを、 次の⑩~④のうちから一つ選べ。 160 初雪までの日数 ⑩ 0 ① -0.2 ② -0.4 ③ -0.6 4 -0.8 セ (ii) 次の⑩~②のうち,図2から読み取れることとして正しいものは セ |の解答群 ⑩ 初冠雪日が260 以上の年は, すべて初雪までの日数が100以下である。 ① 初冠雪日が最も早い年は, 初雪の観測日が最も遅い。 ② 初冠雪日が最も遅い年は, 初雪の観測日が最も早い。 (Ⅱ) 初雪の観測日の日付を 「年間通し日」としたとき,初雪の観測日の平均値はソタチ ツ テ の解答群 ⑩ 初冠雪日の分散よりも小さい ① 初冠雪日の分散と等しい ② 初冠雪日の分散よりも大きい 140 である。 120 100 180 60 平均値 分散 初冠雪日 274.77 初雪までの日数 84.57 40 20 337.11 標準偏差 18.36 607.98 24.66 最小値 222 初冠雪日と初雪までの日数の共分散 -352.80 29 (出典: 甲府地方気象台のWeb ページにより作成) 最大値 300 153 であり、初雪の観測日の分散はテ

回答募集中 回答数: 0
数学 高校生

この問題の2問目で答えがまる2になる理由がわかりません。なぜr1の相関係数は正でr2の相関係数はマイナスとなるのでしょうか。

数学Ⅰ・数学A (4) 2010年度 2015年度および年度における47都道府県別最低賃金 で表す。ただし いずれも また、量をそれぞれ リー 03の二つの散布図は、変量と変量、および変量と変量につ いてまとめたものである。 ただし、変量と変量の散布図には、原点を通り、傾きが0.0 お よび0.1の2本の直線 量と変量の散布図には、原点を通り、類 きが 0.12. および 0.14 の2本の直線が付加してある。 なお、変量と変量の散布図において、変量が55以上である点で、 完全に重なっている点はない。 また、変量と変量の散布図において、変量が760以上である点 で、完全に重なっている点はない。 2-900=106 90 85 80 65 60 55 50 45 40 600円 700 108 104 102 96 160 8000 900 変量 ¥600 9000 (数学Ⅰ・数学A 第2問は次ページに続く。) 800 変量 1000 900 11000 数学Ⅰ・数学A 図3 変量と変量および変量と変量の散布図 (出典:総務省のWeb ページにより作成) (i) 次の⑩~④のうち、3から読み取れることとして正しいものは と キ である。 キの解答群(解答の順序は問わない。) 0 量 の範囲は、変量の範囲より大きい。 ① 変量 の範囲は、変量の範囲の3倍より大きい。 ②変量が最大である都道府県と変量が最大である都道府県 は一致する。 ③ 変量が最小である都道府県と変量が最小である都道府県 は一致する。 ⑩ 変量zの最大値は1000円以上である。 (数学Ⅰ・数学A第2問は次ページに続く。)

回答募集中 回答数: 0
1/4