学年

教科

質問の種類

数学 高校生

[3]θ=0のときPはAに一致 とありますが、QもAと一致しますか?

極方程式と軌跡 00000 基本 例題 83 点Aの極座標を (10, 0), 極0と点Aを結ぶ線分を直径とする円Cの周上の任 意の点をQとする。点Qにおける円Cの接線に極から垂線OP を下ろし、 Pの極座標を (r, 0) とするとき,その軌跡の極方程式を求めよ。 ただし, 00πとする。 [類 岡山理科大 基本 81 指針点P(r, 0) について,r,の関係式を導くために,円Cの中心Cから直線 OP に垂線 CHを下ろし、 OP と HP, OH の関係に注目する。 まず, 00 0<<> π 2'2 <<πで場合分けをして, 0 の関係式を求め,次に, 0=0, の各場合について吟味する。 CHART 軌跡 軌跡上の動点 (r, 0)の関係式を導く 解答 Cの中心をCとし, Cから直線OP に垂線 CH を下ろすと OP=r, HP=5 [1]08のとき [1] P Q 10=7を境目として,Hが 線分 OP 上にあるときと 線分 OP の延長上にある ときに分かれる。 OP=HP+OH OH=5cos0 であるから r=5+5cos [2]のとき [2] OP=HP-OH ここで OH=5cos (π-0)=-5cos0 よって r=5+5cose [3] 6=0 のとき, PはAに一致し、 OP=5+5cos0 を満たす。(*) [4] 6=1のとき,OP=5で, H+ 0 -5-C -5 A X <直角三角形 COH に注目。 C P 1-5- C A H-O C π OP=5+5cos を満たす。(*) 以上から、求める軌跡の極方程式は r=5+5cos0 練習 <直角三角形 COH に注目 (*) [1], [2]で導かれた r=5+5cose が 8 = 0, のときも成り立つかど をチェックする。 [参考] r=5(1+cos e) で れる曲線をカージオイ いう (p.151 も参照)。 点Cを中心とする半径 αの円 C の定直径をOA とする。 点Pは円C上の動 © 83点Pにおける接線に0から垂線OQを引き, OQの延長上に点 R をとって QR=α とする。 Oを極, 始線をOAとする極座標上において, 点Rの極座 (10)(ただし,0≦) とするとき (1)点Rの軌跡の極方程式を求めよ。 (2)直線 OR の点R における垂線 RQ' は, 点C を中心とする定円に接する を示せ。 Op.152E

未解決 回答数: 1
数学 高校生

解答では、それぞれの長さを変数でおいてから、相似比で1変数に直していますが、別解として、θを設定して1変数関数として求めることは出来ますか?できれば答えまで示して欲しいです

ENGRENS. 4K 89 重要 例題 104 最大・最小の応用問題 (2) 題材は空間の図形 ①①①① 半径1の球に,側面と底面で外接する直円錐を考える。この直円錐の体積が最 基本 103 小となるとき, 底面の半径と高さの比を求めよ。 指針立体の問題は,断面で考える。→ここでは,直円錐の頂点と底面の円の中心を通る平 面で切った 断面図 をかく。 問題解決の手順は前ページ同様 ① 変数と変域を決める。 2 量(ここでは体積) を で決めた 変数で表す。 3 体積が最小となる場合を調べる (導関数を利用)。 であるが,この問題では体積を直ちに1つの文字で表すことは難しい。 そこで,わか らないものはとにかく文字を使って表し, 条件から文字を減らしていく方針で進める。 50-0 直円錐の高さをx, 底面の半径を r, 解答 体積をVとすると, x2 であり A TATR)S (高さ)> (球の半径) x2 から。 7= ...... ① x 3 D 球の中心を0として,直円錐をその 頂点と底面の円の中心を通る平面で 切ったとき,切り口の三角形ABC, および球と △ABC との接点 D, E を 右の図のように定める。 (Onie-nia +(1+8203)8 200/ △ABE∽△AOD (*) であるから AE: AD=BE:OD B --E C (*) △ABE と △AODで ∠AEB= ∠ADO=90° ∠BAE = ∠OAD (共通) 26 すなわち x:√(x-1)2-12=r:1 (1+0 2000 2001 0200S) (1+0 200) 対応する辺の比は等しい。 AD は, 三平方の定理 を利用して求める。 x よって r= 2) √x²-2x ②①に代入して V=π 2 x π x •x= 3 dV π2x (x-2) -x2・1 x-2 πx(x-4) • 3(x-2)2 よって dx = 17 3 (x-2)2 dv = 0 とすると, x>2であるから x=4 dx x>2のときVの増減表は右のようになり、 体積 V はx=4のとき最小となる。 このとき, ②から r=√2 ゆえに, 求める底面の半径と高さの比は r:x=√2:4 Vをx (1変数) の式に 直す。 () u'v-uv v.2 x 2 4 dv 4 20 dx V 極小 +

解決済み 回答数: 1
1/1000