学年

教科

質問の種類

数学 高校生

エオの出し方を解答より具体的に教えてください🙇‍♀️

数学Ⅰ データの分析 共通テスト 共通テスト 重要度 34 変量変換による統計量の変化 差が 重要度 Skill 定義に従って考える! 変量xの平均値をx,分散をs.2とし,変量x と変量yの共分散を 8xy とする。 z=ax+b (a, bは定数) として新しい変量zをつくる。 Z の平均値はz=ax+b 0.9 の分散 s22はs=a's Sx Z との共分散 Szy は Szy=axy 数学Ⅰ Check zとし, z4x+1とするとき, zの平均値は 2つの変量xyがあり、xの平均値 x を 2, 標準偏差 Sx を2とする。 アイ, 標準偏差 sz は ウ である。 また z との相関係数 rzyはxとyの相関係数 rxオ 倍である。 解答 回出 z = -4x+1=-4・2+1=-7 xzの分散をそれぞれ Sx', sz2 とする。 Sz = √√sz² = √(−4) ² s² = 4sx = 4·2 = 8 xとyの共分散をxyzとyの共分散を Szy, yの標準偏差を sy とする。 Szy4sxy より Szy -45xy rzy = = SzSy 4SxSy 4.Sx=(-1) rxy 4 SxSy x 10 深める よって, rzy は rxyの1倍である。 「ax+b と yの相関係数」が「xとyの相関係数」 とどのように違うかは、順を追って次のように 考えるとよい。 まず, ax+b について 平均値: 各値がα倍になり増えると,平均値も倍されても増える。 偏差 : 値axi + b の偏差は平均値 ax +b との差なので α(xx) 方が強い。 分散: 以上とった (0) つまり,bを加えることは影響せず, αだけが影響して,α倍になる。 分散は偏差の2乗の平均値。 偏差がα倍なので,分散は2倍になる。 標準偏差 : (標準偏差)=(分散)より,分散がα 倍なら標準偏差は = |a|倍になる。 したがって,ax+b と yについて はない。 共分散共分散は2変量の偏差の積の平均値。 一方の変量だけ偏差がα 倍になるので,共 分散もα倍になる。 (共分散) 相関係数(相関係数)=(標準偏差の積) より倍になる。すなわち,4>0のときはも そのキキ <0のときは1倍になる。

未解決 回答数: 0
数学 高校生

赤波がよく分かりません。教えてください🙇‍♀️

数学Ⅰ データの分析 31 共分散相関係数 Skill 共分散は 「偏差の積の平均値」,相関係数は (共分散) 共通テスト (標準偏差の積) 重要度 2つの変量xのデータを (x1, 1), (x2, P2), ..., (xn, yn) とし, x, yの平 均値をそれぞれx,とし,xとy の標準偏差をそれぞれ 8x, 8yとし,xとyの 共分散を Sx とする。 (共分散 Sxy)=(偏差の積の平均値) =((xx)(-3)(x-x)(12-1)(x-x)(y-y)) xyの値の積 xyの平均値をxy とすると (共分散 S.x)=(積の平均値)(平均値の積)=xyxY (相関係数)= (共分散) (標準偏差の積) Sxy Sx Sy Check 40人の生徒に2種類のテストA, B を行ったところ、次のようなデータが得られ た。 変量 x, y をそれぞれテストA,Bの得点 (単位は点) とする。 32 ヒス Skill 四分 ヒストグラムに- と最大値・最小 見比べればよい Check 14人の生徒 のデータをとっ グラムに表し トグラムの各 含み、右側の 同じデータを トグラムと る。 平均値 中央値 分散 標準偏差 x 5.5 5.5 2.25 1.5 xとyの共分散 1.2 5.2 y 5.0 1.21 1.1 ア イ (1)xとyの相関係数は (2)変量yの各値に1を加えて変量y' をつくった。 このとき,xとy' の共分散は である。 ウ I である。 . 解答 (1) 相関係数は 1.2 === 0.72··· ≒ 0.7 1.5×1.1 12 12 ② 1 解答変 (2) 変量」の値に1を加えると平均値も増えるからの偏差はyの偏 と同じである。 ? よって,x と y'の共分散はxとyの共分散に等しく 1.2である。 変らよ中2 18 よ ま ↓ なぐ 深める 共分散や相関係数を求めるのに必要なのは、偏差である。 変量に操作を加える問題では、偏 ヒストグ 変化に着目する。 (34参照) 32 32

未解決 回答数: 0
数学 高校生

数Bの数学的帰納法の問題です。 この3k^2ってなにを表してますか?

107 14 数学的帰納法 Skill 連鎖のしくみの証明と連鎖が実際に開始することの証明! 学的帰納法 自然数nについての条件が すべての自然数nについて成り立つことを証明す には、次の2つのことを証明するとよい。 n=1のときPが成り立つ。 [m] =kのときPが成り立つと仮定すると. =k+1のときもPが成り立つ。 ■ を Check で割って 定めると 連鎖が実際に開始することの証明 連のしくみの証明 共通テスト 命題 「自然数nに対して, 3">² である。」 ある。 太郎さんは,数学的帰納法を用いて次のように証明しようとした。 ...... (*) とする。 I) 3'1" であるから、n=1のとき (*)は成り立つ。 [II] n=kのとき (*) が成り立つ。 すなわち, 3① と仮定する。 n=k+1のときの (*) の両辺の差を考えると,①より, 3+¹-(k+ 1)² ≥ 3k²-(k+1)² = 2k²-2k-1 太郎さんはここで2k2k-10 を示すことができないことに気づき、 行き詰まっ てしまった。 この後の修正方針として適切なものを次の⑩~②のうちから一つ選べ。 〔II〕で,n=kのとき(*)が成り立つことを仮定し,n=k+2のとき(*)が成り 立つことを示す。 ⑤ [II] で、nk+1のとき(*)が成り立つことを仮定し,n=k+2のとき(*)が 成り立つことを示す。 ② [1] で、n=1,2のとき (*)が成り立つことを示し,〔II〕で,k22 としてn-k のとき(*)が成り立つことを仮定し,n=k+1のとき(*)が成り立つことを示す。 数列答 0 の場合.n= 2,4,6,・・・ に対して (*) が成り立つことが示せない。 ①ではk=0,1, 2, …. としなければならず、 結局. 現在の太郎さんの解答と同じ。 ② める 学的帰納法による証明には、いくつかのバリエーションがある。 例) [B] において 「n=k, k+1 での成立を仮定して,n=k+2でも成立することを示す」 [1] においては"= 1,2で成立することを示さないといけない。 [1] [II] を組 の例の場合、 (4) の ことも 合わせることで「証明したい範囲のすべての自然数nに対して条件が成り立つことが連鎖して か」を確認すること。 数学B 115

回答募集中 回答数: 0
数学 高校生

回答わかる方いますか?

16 次の(A), (B)の問いに答えなさい。 (A 次の英文を読んで, 文意が通じるように, 2回~16時に入れるのに最も適切な語(旬) を0~ から1つずつ選び, 番号で答えなさい。 In 2019, the Rugby World Cup was held in Japan. Rugby wasn't very popular among Japanese people until just a few years ago. In the *previous World Cup in 2015, Japan won a game against South Africa in a dramatic *upset victory. And in this World Cup, Japan reached the final eight. The Japanese national team made history and has 0 taken 5@ brought Do you know who started Japan's *bid to host the Rugby World Cup? There was a man who had a great passion for rugby. He was a * diplomat named Katsuhiko Oku, In 2003, he was suddenly attacked and killed by *terrorists in *Iraq, He was 290 engaged O prepared He started playing rugby at a public high school in Hyogo. He also showeda great talent for rugby at Waseda University. At that time, he had a dream to be a diplomat and work internationally in the future. After deep *consideration, he decided to 30O continue to However, he *encountered rugby again at Oxford University, and he tried hard to 15 develop his skills there. He became the first Japanese player of the Oxford rugby team. After that, he kept his love for rugby in his heart and *devoted himself to Japanese rugby while he worked on the 31) | 0 social Six years after his death, it was decided that the Rugby World Cup would be held in Japan. O given rugby into the hearts and minds of Japanese people. O satisfied in *reconstruction support activities for Iraq. 10 @ keep off O give up rugby then. O necessary O international stage. [注) previous (前の) terrorist(テロリスト) consideration(熟慮) upset(番狂わせ) Iraq(イラク) encounter . (……に出会う) bid (宣言 reconstf uction (復興) diplomat (外交官) devote oneself to (…に身を捧げる)

回答募集中 回答数: 0
1/2