学年

教科

質問の種類

数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

数I データの分析について 第3四分位数が3番目だとするのが分かりません

例題11 箱 右の図は、2つの漁港A. B のある年における各月の水 揚げ量 (kg) の箱ひげ図である。 次の①~④のうち、この 箱ひげ図と矛盾するものを1つ選べ。 ただし, 漁港 A, Bとも、同じ水揚げ量の月はなかったものとする。 ① 水揚げ量の中央値は, 漁港Bより漁港Aの方が小さい。 ② 水揚げ量の範囲は、 漁港Aより漁港Bの方が大きい。 漁港A 漁港B 100 200 300 ③漁港Aで3番目に水揚げ量が多かった月の水揚げ量は400kg 以上である。 ④ 漁港Bで200kg未満の水揚げ量の月は4か月あった。 考え方 最大値、最小値,四分位数を読み取り, 正誤を判断する 正誤を判断する問題では,正確な値まで読み取る必要のない問題もある。 選択肢 ①〜④に関する必要な情報を抜き出して, 正誤を判断する。 ポイント ① 正誤を判断 → (解答) 400 500(k [類 東北文化学 ① 漁港Aの中央値 (約280kg) は漁港Bの中央値 (約305kg) より小さいから、正 ② 漁港 A, B のおおよその範囲はそれぞれ 420-100=320 (kg), 500-150=35 よって, 漁港Aより漁港Bの方が範囲が大きいから,正しい。 ③漁港Aの第3四分位数は400kg であるから, 漁港Aで3番目に水揚げ量が多 月の水揚げ量は400kg以上であり, 正しい。 ④漁港Bの第1四分位数は200kgであり、 同じ水揚げ量の月はない。 よって, 200kg未満の水揚げ量の月は3か月であるから, 矛盾する。 したがって, 矛盾するものは 4 答

回答募集中 回答数: 0
数学 高校生

数学Aの問題です。DGの中点Hは▲BDGの外心である。というところが理解できないです。なぜ外心になるのですか?よろしくお願いします。

138 (1)円と直線に関する次の定理を考える。 3点P,Q,R は一直線上にこの順に並んでいるとし,点Tはこの 定理 直線上にないものとする。 このとき, PQ・PR=PT2 が成り立つな らば、直線PT は 3 点 Q,R, T を通る円に接する。 この定理が成り立つことは,次のように説明できる。 直線 PT は 3点 Q,R,Tを通る円0に接しないとする。このとき,直線 PT は円Oと異なる2点で交わる。直線 PT と円0との交点で点Tとは異なる点 を T' とすると, PT・PT'= イが成り立つ。 点と点T' が異な ることにより, PT・PT' の値と PT2の値は異なる。 したがって, PQ・PR=PT2に矛盾するので,背理法により,直線 PT は3点 Q,R, T を通る円に接するといえる。 ア イ の解答群(解答の順序は問わない) PQ ①PR 2 QR 3 QT ④RT (2)△ABCにおいて,AB= BC= AC=1 とする。 3 4 ウ このとき,∠ABC の二等分線と辺 AC との交点をDとすると,AD= I である。 直線 BC 上に, 点Cとは異なり, BC=BE となる点Eをとる。 数学A AC ∠ABE の二等分線と線分AE との交点をFとし、直線ACとの交点をGとす オ △ABFの面積 キ ると, である。 AG カ △AFGの面積 ク ケ 線分 DG の中点をHとすると, BH= である。 また, AH= コ シ’ A ス CH= である。 セ △ABCの外心をOとする。 △ABCの外接円0の半径が ることから、線分BH を 1:2に内分する点をI とすると IO= [ト ナ] であることがわかる。 ニヌ タチ であ [22 共通テスト追試] SAL

回答募集中 回答数: 0
数学 高校生

青チャ数Bの問題です 右の写真の私の83(1)の解答について、どこからが間違っていますか?やはり最後に90°-θをしなければならないのですか?しかし私には90°-θをする理由がわかりません。 加えて解答の書き方に不備がありましたら、そちらもご教示ください 字が汚くすみ... 続きを読む

演習 例題 83 直線と平面のなす角, 直線に垂直な平面 x-2_y+1 (1) 直線l: = 4 -1 =z-3と平面α:x-4y+z=0 のなす角を求めよ。 (2)点A(1,1,0)を通り,直線x6=y-2=- 1-z に垂直な平面の方程式を 2 求めよ。 た 演習 78,80 指針▷(1)直線lと平面αのなす角は,lのα上への正射影(*)を l' とすると, 右の図のようにll のなす角 0 である。 したがって, 平面αの法線ベクトルを直線lの方向ベ クトルをdとdのなす角を とすると, 0=90°-01 または 0=01-90°である。 ! (2)直線に垂直な平面 → 直線の方向ベクトルが平面の法線 ベクトルである。 解答 (1) 直線lの方向ベクトルをd=(4,1,1) とし, 平面 α の法線ベクトルを=14,1)とする。 dとんのなす角を10° 180°) とすると d.n COS G1= dn = 4・1+(-1)・(-4)+1・1 √4°+(-1)+12√1°+(−4)'+12 1 = 20 0° 180°であるから =60° よって、直線lと平面αのなす角は 90°-60°=30° (2) 館 6 21 日 a (*) 直線l上の各点から平 面αに下ろした垂線の足 の集合を,直線lのα 上へ の正射影という。 A 4+4+1_9_1 √18 18 18 2 h z-C

回答募集中 回答数: 0
1/74