学年

教科

質問の種類

数学 高校生

これの(2)でr=0、1、2で場合分けしてると思うんですけど、なんで場合分けした各値を足しているんですか?普通場合分けの時って、答えはr=0のとき〇〇、4=1のとき〇〇みたいに書くんじゃないんですか?

次の式の展開式における,[]内に指定された項の係数を求めよ。 (1) (x+2y+3z) [x°yz] [武蔵大] (1+x+x2)[x] [愛知学院大 ] P.16 基本事項 指針 二項定理を2回用いる方針でも求められるが,多項定理を利用して求めてみよう。 解答 n! (a+b+c)" の展開式の一般項は p!q!r! a'b'c', p+q+r=n (2)上の一般項において, α=1, b=x, c=x2 とおく。 このとき,指数法則により 1.xq(x2)'=x9+2r である。 g+2r=4となる0以上の整数 (p, g, r) を求める。 (1) (x+2y+3z) の展開式の一般項は 4! 4! pigirix (2y)(3z)=(piair! 20.3)xyz ただしp+q+r=4, p≧0,g,r (a+b+c)の一般項は 4! p!q!r! a'b'c' (p+gtr=4, p≧0, q≥0, r≥0) を これら xyz の項は,p=2, g=1,r=1のときであるから 4! ・2・3=72 2!1!1! 別解 {(x+2y) +3z} の展開式において, zを含む項は C(x+2y) •3z=12(x+2y) z また, (x+2y) の展開式において,xy を含む項は Cx2.2y=6x2y よって, xyz の項の係数は 12×6=72 (2) (1+x+x2)の展開式の一般項は 二項定理を2回用いる方 針。 まず(+32) の展 開式に着目する 二項定理 8! 8! 1.x(x2)= p!g!r! *x9+2+ <(cm)=am p!q!r! ただし p+g+r=8 ①, p≥0, q≥ ≥ dp, g, rは負でない整数。 ****** p=r+4 4-2r≥0 ****** ③ ②①に代入すると p+4-2r+r=8 xの項は, g+2r=4 すなわち g=4-2r のときであり, ① ② から ここで,②g≧0 から rは0以上の整数であるから ②③から r=0 のとき r=1のとき p=5g=2 よって, 求める係数は 8! r=0, 1, 2 p=4,g=4 r=2のとき p=6,g=0 44-27205 r≤2 8! 8! + =70+168+28=266 4!4!0! 5!2!1! 6!0!2! 40!=1

解決済み 回答数: 1
数学 高校生

多項式の加法についての質問です (2)の答え、5a^2+3ab+b^2と書かれていますが、bについて考えてるので、b^2+3ab+5a^2ではダメなんですか?

月 基本 例題 1 同類項の整理と次数・定数項 00000 次の多項式の同類項をまとめて整理せよ。また,(2),(3)の多項式において,[ ]. 内の文字に着目したとき,その次数と定数項をいえ。 (1)3x2+2x-6-4x2+3x+2 (2)_2a²-ab-b2+4ab+3a² +262 [b] (3)x3-2ax2y+4xy-3by+y2+2xy-2by+4a [xとy], [y] 同類項は,係数の和を計算して1つの項にまとめることができる。 例えば, (1) では 解答 p.12 基本事項 3,4 3x2-4x2=(3-4)x2=-x2 など。 また,(2),(3)において、[ ]内の文字に着目 したとき,着目した文字以外の文字は数と考 える。 例 4ab 係数 αに着目 4b.a 次 例えば, (3) xyに着目したら、残りのα, 6は数とみる。 αとに着目→4・ab ↑ 係数 2次 CHART 式の整理 同類項に着目して降べきの順に並べる (1) 3x2+2x-6-4x2+3x+2 =(3x²-4x2)+(2x+3x)+(-6+2) =-x+5x-4 (2) 2a2-ab-b2+4ab+3a2+262 =(2a2+3a²)+(-ab+4ab)+(-62+262) 同類項をまとめる。 同類項をまとめる。 =5d²+3ab+b2 次に, 6 に着目すると b2+3ab+5a2 62+6+▲ の形 次数2, 定数項 5a2 理。 6以外の文字は 考える。 (3)x-2ax2y+4xy-36y+y'+2xy-2by+4a =x-2ax2y+(4xy+2xy)+y2+(-3by-2by)+4a =x-2axy+6xy+y2-56y+4a 次に,xとに着目すると 次数 3, 定数項4a また, に着目すると y2+(-2ax2+6x-5b)y+x+4a 次数 2, 定数項 x+4a xとyについて 3 (項→2次の項→ の項→定数項の 理(降べきの順)。 <y2+y+▲の形 以外の文字は数 る。

解決済み 回答数: 1
1/37