学年

教科

質問の種類

数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

105.2 記述に問題ないですか?

て求めよ。 後の数の差が せよ。 24148 基本事項 ② される。 下3桁が8の とみなす) Da+b を示す。 ■ +36 6 00m 122 切ると 122 である になる。 tcが 基本例題105 素因数分解に関する問題 63n 40 7 (1) (1) (2) 解答 (1) √Am (m は偶数)の形になれば, 根号をはずすことができるから, 指針 いずれの問題も素因数分解が,問題解決のカギを握る。 √の中の数を素因数分解しておくと、考えやすくなる。 n (2) 14/05 = (mは自然数) とおいて, ,2 n³ 196 " 441 を考える。 JUSCONOTON 練習 ② 105 n² n , 6 196, 63n (1) (3) が有理数となるような最小の自然数nを求めよ。 BSC1638 COMERC V 40 これが有理数となるような最小の自然数nはn=2・5・7=70 n (2) = (m は自然数) とおくと 6 ゆえに 3 n 441 N 53 441 3².7n 2³.5 7 3a+2a+? EKOPACOTCO これが自然数となるのは, が7の倍数のときであるから, m=7k(kは自然数) とおくと n=2.3.7k ① よって用 23.33.73k³ 3².7² -= 2³.3.7k³ ONDOR 3220520 これが自然数となるもので最小のものは, k=1のときである から, ① に k=1 を代入して n=42 n 10 n=2.3m n² 22.32m² 32m² \2 196 (3m)² ² = 2272 500 77n = 1 【検討 素因数分解の一意性 素因数分解については,次の 素因数分解の一意性も重要である。 がすべて自然数となるような最小の自然数nを求めよ。 p.468 基本事項 ③ 3 7n 2 V 2.5 18 nº が自然数となる条件 が有理数となるような最小の自然数nを求めよ。 √54000nが自然数になるような最小の自然数nを求めよ。 3 2 n° 45 00000 000 UT 合成数の素因数分解は,積の順序の違いを除けばただ1通りである。 したがって、整数の問題では、2通りに素因数分解できれば,指数部分の比較によって方程式を 解き進めることができる。 問題 3"15"=405 を満たす整数m,nの値を求めよ。 解答 3.15=3(3・5)"=3"+".5", 405=34・5 であるから 3m +1.5"=34.5 よって m=3, n=1 指数部分を比較してm+n=4,n=1 |素因数分解 3) 63 3) 21 7 63=3².7 63=327,40=23.5 3 7 2 V 2-5 ・×2・5・7 =12/23.7=12/12 (有理数) となる。 HO より, kが最小のとき, nも最小となる。 1645500 03-31801- がすべて自然数となるような最小の自然数n を求めよ。 (p.484 EX74.75

回答募集中 回答数: 0
数学 高校生

119. cが3の倍数でないときcの2乗を3で割ったときは2ではないのですか?(a^2+b^2の余りが2でa^2+b^2=c^2なので余りが2だと思いました。)

-9 い。 つ 考え お 。 重要 例題 119 等式 a²+b²=c^に関する証明問題 a,b,cは整数とし,+b2=c^2 とする。a,bのうち、少なくとも1つは3の倍 数であることを証明せよ。 基本 117 指針>「少なくとも1つ」の証明では、間接証明法 (対偶を利用した証明, 背理法) が有効であ る。ここでは,背理法を利用した証明を考えてみよう。 「α, bのうち、少なくとも1つは3の倍数である」の否定は, 「α6はともに3の倍数でない」 であるから, a =3m+1,3m+2;6=3n+1,3n+2 (m,nは整数)と表される。 よって, a,bがともに3の倍数でないと仮定して, d'+b2=c^2 に矛盾することを導く。 CAHOTSAL 08 CHART の倍数に関する証明なら, で割った余りで分類 解答 a,bはともに3の倍数でないと仮定する。 このとき,a2, 62は (3k+1)=3 (3k²+2k)+1, (3k+2)^=3(3k²+4k+1) +1 のどちらかの式のkに適当な整数を代入すると, それぞれ表さ れる。 3k2+2k, 3k²+4k+1は整数であるから、3の倍数でない数α, bの2乗を3で割った余りはともに1である。 [+5] したがって, a2+b2を3で割った余りは2である。…… ① 一方,cが3の倍数のとき, c2は3で割り切れ, cが3の倍数でないとき, cを3で割った余りは1である。 すなわち,c2を3で割った余りは0か1である。 2 ① ② は a²+6°= c2 であることに矛盾する。 -- ゆえに,a^2+b2=cならば、a,b のうち、少なくとも1つは 3の倍数である。 (平方数とは、自然数の2乗になっている数のこと。) DCは奇数である 【検討】 ピタゴラス数とその性質 a2+b2=c2 ゴラス数 (a,b,c) について,次のことが成り立つ。 a, ものうち、少なくとも1つは3の倍数である。 (2) a,bのうち、少なくとも1つは4の倍数である。 a,b,cのうち, 少なくとも1つは5の倍数である。 3 参考 <a =3m+1,b=3n+2 など の場合をまとめて計算。 [①の理由] ( 3K+1)+(3L+1) =3(K+L)+2 AASURA NOTAR 注意 「平方数を3で割った余りは0か1である」 (上の②) も, 覚えておくと便利である。 **a, (K,Lは整数) (から。 (左辺)÷3の余りは2 (右辺) ÷3の余りは0, 1と なっている。 A を満たす自然数の組 (a, b, c) を ピタゴラス数 という。 A を満たすピタ FC <重要例題 119 p.491 EXERCISES 86 p.496 練習 123 (2) ①② から abは12の倍数であり, 1~③から, abc は 60 の倍数である。 b,c, d が等式α'+b'+c2=d2 を満たすとき, dが3の倍数でないな の中に3の倍数がちょうど2つあることを示せ。 [一橋大] Op.491 EX86 489 4章 18 整数の割り算と商および余り あ あ 九

未解決 回答数: 0