学年

教科

質問の種類

数学 高校生

なぜ(2)の一番最後に書いてある(したがって〜)ことが成り立つのかが分かりません。

基本例題 34 内積と直線のベクトル方程式, 2直線のなす角 (1) 線gの方程式を求めよ。する する (2) 2直線2x+y-6=0,x+3y-5=0 のなす鋭角を求めよ。 基本事項(1) p.432 KAO 指針 直線において, n = (a,b) はその法線ベクトル (直線に垂直なベク 2x-3y+6=0 に平行な直線をgとする。直 (3,4)を通り,直線ℓ: トル)である。・・・・・・・・・ (1) lの法線ベクトルはすぐにわかるから,これを利用すると lin, lng gi すなわち, nは直線gの法線ベクトルでもある。 (2) 2直線のなす鋭角→2直線の法線ベクトルのなす角を考える。 直線 2x+y-6=0 の法線ベクトル 直線x+3y-5=0の法線ベクトル HAND を利用して, n, m のなす角0 (0°≧0≦180°) を考える。 よって,直線g上の点を P(x,y) とすると An·AP=0 (1) 直線l:2x-3y+6=0 の法線ベクトルであるn=(2,-3) (1) yA は、直線gの法線ベクトルでもある。 AP=(x-3, y+4) であるから すなわち 2x-3y-18=0 (2) 2直線2x+y-6=0, x+3y-5=0 の法線ベクトルは,それぞれ =(2,1), m=(1,3) とおける。 TAP とのなす角を0 28 ||=√/12+32=√/10, n・m=2×1+1×3=5 ゆえに cosp=on.m 2(x-3)-3(y+4)=0 53 5 nm √5√10 よって ゆえに 0=45° したがって, 2直線のなす鋭角も 45° 0 (0°≧0≦180°) とすると調 0 \n\= √2²+1²= √5 (33)=3-(2,1)³ = (1) =(2,1SD =(1,3) 1 √2 HA00 XA03 m=(1,3) (数)と 0 A-HA Jet x Jet O 12 -30 31 -=|HA|-HA||| ‹‹ ãÊDA (S) n A ATSO HAS |HA|||± HAR HAN HA-HA- P JONAJ 直線の方程式における x, yの係数に注目。 L 5 cos = 5:$, () ve Ta|16|- 435 検討 red + 法線ベクトルのなす角が 鈍角のときは,2直線のなす 鋭角は180°-0となる。 1章 5 ベクトル方程式

回答募集中 回答数: 0
数学 高校生

合同式を用いた回答の方が分からないのですが、なぜ偶数と奇数で場合分けをしているのですか?

534 XX 重要 例題 100 等差数列と等比数列の共通項 00000 列{an}の項でもあるものを小さい方から並べて数列{cn} を作るとき, 数列{cm) 数列{an}, {bn}の一般項を an=3n-1,bn=2" とする。 数列{bn}の項のうち、数 の一般項を求めよ。 CO 重要 93. 基本 99 指針▷>2つの等差数列の共通な項の問題 (例題93) と同じように,まず,a=bmとして、1mの 関係を調べるが,それだけでは {cn}の一般項を求めることができない。 そこで,数列{an}, {bn}の項を書き出してみると,次のようになる。 (an): 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, {bn}: 2,4,8,16,32, を順に調べ、規則性を a=by, Ca=bs, Ca=bs となっていることから,数列{bn} を基準として, bm+1 が数列{a の項となるかどうか, bm+z が数列{an}の項となるかどうか、 見つける。 解答 α = 2, b=2であるから C1=2 数列{an}の第1項が数列{bn} の第 m 項に等しいとすると規測性から 3-1=2m 答えを予想はできたこ ゆえに bm+1=2m+1=2m・2=(3Z-1)・2 ...... =3.21-2 よって, bm+1 は数列{an} の項ではない。 ①から bm+2=26m+1=3・4l-4 =3(4-1)-1 ゆえに, bm+2 は数列{an} の項である。 したがって {C}:b1,63,65, 数列 {cm} は公比22の等比数列で, C1 = 2であるから Cn=2.(22)"-1=22n-1 20 3・O-1 の形にならない。 22"=4"=1"≡1(mod3) [2] m=2n-1(nは自然数) とすると THE JAN ,830 V-b (s) cn=1412 などと答えてもよ 検討 合同式(チャート式基礎からの数学A 参照) を用いた解答 3n-1=-1≡2(mod3) であるから, 2=2 (mod3) となるm について考える。 [1] m=2n(nは自然数) とすると 22n-1=22(n-1).2=4”-1.2=1"-1.2=2 (mod3) [1], [2] より m=2n-1 (nは自然数) のとき 2が数列{cm} の項になるから Cn=bzn-1=22n-1 重要 初項が 10g103= C41) 10 △×(2) 初 指針 練習 数列{an},{bn}の一般項をan=15n-2, bm=7.27-1 とする。 数列{bn}の項のう (④4) 9 100 ち, 数列{an}の項でもあるものを小さい方から並べて数列{cm} を作るとき, 数列 {C}の一般項を求めよ。 03102 解 (1) 初 103- s +6 各 ゆ よ す n

回答募集中 回答数: 0
数学 高校生

合同式を用いた回答の方が分からないのですが、なぜ偶数と奇数で場合分けをしているのですか?

534 ME XX 00000 重要 例題 100 等差数列と等比数列の共通項 列{an}の項でもあるものを小さい方から並べて数列{cn} を作るとき, 数列{cn 数列{an}, {bn}の一般項を an=3n-1,bn=2” とする。 数列{bn}の項のうち、数 の一般項を求めよ。 重要 93 基本 99 指針▷>2つの等差数列の共通な項の問題(例題93) と同じように,まず,a=bmとして、1mの 関係を調べるが, それだけでは {cn}の一般項を求めることができない。 そこで, 数列{an}, {bn} の項を書き出してみると,次のようになる。 (an): 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, {bn}:2,4,8,16,32, Handlin を順に調べ、規則性を Ci=b, Ca=b3, C3 = bs となっていることから,数列{bn}を基準として, 6m+1 が数列{0.² の項となるかどうか, bm+2 が数列{an} の項となるかどうか、 見つける。 解答 a1=2, b=2であるから C1=2 数列{an}の第1項が数列{bn}の第m項に等しいとすると 3l-1=2m U-18 ゆえに bm+1=2m+1=2m・2=(3-1)・2 = 3.21-2 よって, bm+1 は数列{an} の項ではない。 ①から bm+2=26m+1=3.4l-4 =3(4-1)-1 ゆえに, bm+2 は数列{an} の項である。 したがって {C}:b1,63,65, 数列 {cm} は公比 22 の等比数列で, C1 = 2であるから Cn=2.(22)"-1=22n-1 22n=4"=1"≡1(mod3) [2] m=2n-1(nは自然数) とすると 規測性から 答えを予想はできたこ SS 3・O-1 の形にならない。 JANE 重要 初項が 10g10 3= 141) 10 △×(2) 初 30 \-=b (s) 7V=5,2V=D 検討 合同式(チャート式基礎からの数学A 参照) を用いた解答 3n-1=-1≡2(mod3) であるから, 2" = 2 (mod3) となるmについて考える。 [1] =n(nは自然数) とすると 1970 4" cn=122 などと答えてもよ L 22n-1=22(n-1).2=4”-1.2=1"-1.2=2 (mod3) [1],[2] より,m=2n-1 (nは自然数) のとき 2” が数列{cm} の項になるからコ Cn=bzn-1=22n-1 指針> 練習 数列{an},{bn}の一般項をan=15n-2, bn=7.27-1 とする。 数列{bn}の項のう (4) 100 ち,数列{an}の項でもあるものを小さい方から並べて数列{c,}を作るとき, 数列 {cn}の一般項を求めよ。 .631 02 解答 (1) 初 103- 各 ゆ よ す n G

回答募集中 回答数: 0
数学 高校生

青チャートII Bの直線の方程式の質問です。黄色線の式はどうやって立ったんですか?

EX 3点O(0, 0), A(4, 0), B(2, 2) を頂点とする三角形OAB の面積を, 直線l:y=mx+m+1 ④56 が2等分するとき, 定数mの値を求めよ。 [早稲田大] HINT] △OAB は ∠B=90°の直角二等辺三角形。 直線ℓと辺 OB, AB の交点をそれぞれP, Qと すると ABPQ=1/2BPBQ △BPQ= △OAB=1/23・4・2= また, 直線 OBの方程式はy=x, 直線 AB の方程式はy=-x+4 であるから, 直線OB と直線AB は垂直に交わる。 ∠OBA=90° よって l の方程式を変形すると •4.2=4 △OAC= ゆえに 1/3<m</1/3 くく 直線AB の傾きは-1であるから y=m(x+1)+1 ゆえに, lは点(-1, 1) を通り, 傾きがmの直線である。 ここで,点(-1, 1) をCとすると BQ=√ したがって AOAC-1/241=2=1/12 △OAB 4・1=2 このことから,lが △OAB の面積を2等分するとき, lは辺 AB と交わることがわかる。 (-1,1) C 1 lが点Aを通るとき 0 =4m+m+1 よって m= m=- 5 1 lが点Bを通るとき 2=2m+m+1 よって m= 3 分母を払って 整理すると これを解いて y₁ ① を満たすのは ① のとき, lと辺OB の交点をPとし, l と辺AB の交点を Q とする。 点Pのx座標は,x=mx+m+1を解いて 点Qのx座標は,-x+4=mx+m+1 を解いてx= 直線OBの傾きは1であるから BP = √2 (2_m+1) = ² √2 (1-3m) 1-m 0 m= 2 √2 (1-3m) m+1 (1-3m)=2(1-m²) 11m²-6m-1=0 3±2√5 11 m= P, B 2 3-2√5 11 3-m = √2 ( 3³3 =²2² - 2) = ² m+1 ABPQ=1/2BP-BQ=12.12(1-3m)√(1-3m) 4 x= e l Ax (1-3m)2 2 1-m² l が △OAB の面積を2等分するとき, △BPQ=2となるから (1-3m)2 =2 1-m² m+1 m+1 1-m 3-m m+1 ←垂直 ⇔傾きの積が-1 ←m がどんな値をとっ ても, (x,y)=(-1, 1) は等式 y=m(x+1)+1 を満たす。 PA m+1 1-m B 2 ·O· Q 3-m x m+1

回答募集中 回答数: 0