学年

教科

質問の種類

数学 高校生

確率の問題です 最後の「3個の玉に書かれた数字の和が偶数になる確率」が分かりません 答えは19/35となります

整数(2023年度 11 [4] ) 27との最小公倍数が675であるような自然数は全部でス 個あり、そのなかで最小のものは センである。 順列組み合わせ (2021年度 [2]) 4種の数字 0 1、2、3について、 それぞれの数字を重複して用いてもよいとき、これらの数字を 使ってできる4桁の偶数は全部でオカ 通りである。 また、数字を重複して用いないとき、これら の数字を使ってできる4桁の偶数は全部でキク 通りである。 確率(2022年度 ① [5]) 1、2、3、4、5、6、7の異なる数字が書かれている7個の玉が袋に入っている。 よくかき混ぜてか ら、3個の玉を取り出したとき、書かれた数字が全て奇数である確率は であり、書かれた数 ① 字の和が偶数である確率は ネ ハヒ である。 奇数になる場合 ① 奇数×3. ② 偶数×2、奇数×・・・テ FL X ベクトル (2023年度 [4] ) 2つのベクトルa=(2,5)、 1=(t, 4) について考える。 a // となるのは、t= である。また、(a+b)(a-b) となるのは、t=±√ツダ のときである。 また、 13. 3 IAⅡIB 数列(2022年度 [4] ) 初項から第n項までの和がn2-2nである数列の初項は α=テトであり、第n項は an=ナn である。 x ス のとき 35

解決済み 回答数: 1
数学 高校生

172.3 これでも大丈夫ですか??

さい。 去。 ろえ -) g53 基本例題112 対数の表現 (1) 10g23=a, log35=6のとき, log210と1015 40 を a b で表せ。 1 logx b= log.xc= のとき, 10gabcxの値を求めよ。 8' 24 ga=1 (2) 10gxa= 1 3' (3) a,b,c を1でない正の数とし, 10gab=a, log.c=β, logca=y とする。 1 1 このとき, ab+By+ya=-+ + が成り立つことを証明せよ。 a B 指針 (1) 10,15, 40 をそれぞれ 分解して, 2, 3,5の積で表すことを考える。 (2) 10gabcx= logx abc (3) 右辺を通分すると, 分母に aβy が現れる。 これを計算してみる。 363510 1 また 解答 The Parent (1) log2 10=log2 (2-5) = log₂2+log25=1+log25 ここで よって log2 10 log₂ (2.5)=1+log₂5 底の変換公式を利用して, 10g25 をa, b で表す。 また 10g 15 40 は, 真数 40=5・2° に着目して,2を底とする対数で表す。 である。 10gxabcの値を求める。 1 log35 log32 log210=1+ab |_log25= log1540= == + 1/3 + a = r -= log₂3.log35=ab RETS S00 log2 40 log215 (2) ab+3 ab+3 a+ab a(b+1) = (2) logxabc=logxa+logxb+logxc= よって logabc X= 1 aβ+βy+ya...... ① aby log2 (5.2³) log2 (3.5) 1 logxabc a log25+3 Puiglog23+10g25 =2 aby=loga blogb clogca=logab. 1+1+1/0 であるから、①より したがって,等式は証明された。 1 1 1 + + 3 11 24 8 10gac.. loga blogac 1 2 cal =1 00000 [名城大] =aβ+βy+ya が成り立つ。 aduto 1 log32= log23 前ページ検討も参照。 ( 10g25 = ab (前半から) log■ [久留米大] (3) 別解 基本171 したがって (左辺) log 1 aβ=logablog.c=logac 同様に βy=10gba Ya=logcb =logac+loga+logcb 1 1 + + Y a B 練習 (1) 10g2=a, logs4=6とするとき, log158 をa, bを用いて表せ。 ③172 でない正の数とし, A=logza, Blog2 bとする。 a, bが 2=-1、ab=1を満たすとき, A, B の値を求めよ。 芝浦工大 (2)類 京都産大] (p.272 EX110 269 5章 30 対数とその性質

解決済み 回答数: 1
数学 高校生

157.2 記述に問題ないですか??

246 基本例題157 三角関数の最大 最小 (4) ・・・t=sin+cos0 ①①00 関数 f(0) = sin20+2(sin0+ cos 0) - 1 を考える。 ただし, 0≦O<2πとする。 (1) t=sin0+cose とおくとき, f(0) を tの式で表せ。 (2) t のとりうる値の範囲を求めよ。 (3) f(0) の最大値と最小値を求め,そのときの0の値を求めよ。 415 指針▷ (1) t=sin+cose の両辺を2乗すると, 2sin cos 0 が現れる。 解答 (1) t = sin0+cose の両辺を2乗すると (2) sin+cose の最大値 最小値を求めるのと同じ。 (3)(1) の結果から,t の2次関数の最大・最小問題 (t の範囲に注意) となる。よって、 本例題141 と同様に 2次式は基本形に直すに従って処理する。 0 ゆえに したがって t2=sin20+2sin Acos0+cos20 t2=1+sin20 よって f(0)=t2-1+2t-1=t+2t-2 (2) t=sin0+cos0=√/2sin (0+4) ① 9 00 <2のとき,40+1 したがって -15sin(0+)≤15 -√2 ≤t≤√2 (3) (1) から f(0)=t2+2t-2=(t+1)²-3 -√2≦t≦√2の範囲において, f(0) は t=√2で最大値 2√2, t=-1で最小値-3 をとる。 t=√2 のとき, ① から sin (0+4)=1 =1& 76ain ②の範囲で解くと t=-1のとき, ① から ② の範囲で解くと よって π 0+ T π...... ・・・・・ ② であるから π 4 2 0+ sin20=t2-1 π 5 4 4 Leben feue EN 0=7のとき最大値2√2; π, 1 sin (0+4)=-(+)nie √2 $2 すなわち匹 0=1 4 ; 0= π, 3 7 - すなわち0=π, 4 【sin²0+cos20=1 YA O 基本13 14 【類 秋田 ② : 合成後の変域に注意。 3 π 2 のとき最小値-3 √2 f(0) 2√2-1 -1 1 iO 最小 -3 1

解決済み 回答数: 1