学年

教科

質問の種類

数学 高校生

二次関数 絶対値を含む関数のグラフの基礎の基礎についてです 実線部分ってどうやって求められるんですか?? ヘルプ;;

229 (1) x-2≧0 すなわち x>2のとき y=x-2 x-2<0 すなわち x<2のとき y=-x+2 よって,グラフは[図] の実線部分である。 (2) 3x+2>0 すなわち x≧- y=3x+2 2 3x+2<0 すなわち x <! 333 のとき 2 解 -2 y=-3x−2 よって, グラフは [図] の実線部分である。 (1) .2 4x 編 1/1/2のとき (2) 4 -3 y O 2 3 2 (3) y=|x2-4x|=|x(x-4)| x(x-4)≧0 すなわち x≧0, 4≦xのとき 25 -59 y=x2-4x=(x-2)2-4 x(x-4)<0 すなわち0<x<4のとき y=-x2+4x=-(x−2)2+4 よって, グラフは 〔図] の実線部分である。 (4) y=x2+3x-4|=|(x-1)(x+4)| (x-1)(x+4)≧0 すなわち x≦-4, 1≦xのとき y=x2+3x-4=(x+2/22-25 (x-1)x+4)<0 すなわち -4<x<1のとき 3\2 y=-x²-3x+4= -(x + 2)²³+25 4 共通部分である。 1 多項式の 指数法則 m ① am xa"= ③ (ab)"=d 展開の公式 ① (a+b)^ ② (a+b)( 3 (x+ a)( 4 (ax+b 2 因数分1 共通因数を 因数分解 ① a²+20 ②a²-bi ③x2+(1 4 acx²- 3実 実数の分 実数 有 [無 ・絶対値 a≥0 ( 66 ● 第3章 2次関数 研究 絶対値を含む関数のグラフ 例題 36 考え方 解答 絶対値を含む関数のグラフ 関数 y=|x+1|+|x-3|のグラフ B問題 絶対値記号の中の式の符号によって場合: x+1, x-3の符号で場合を分けて考える x<-1のときy=-(x+1)-(x-3) よって y=-2x+2 -1≦x<3のとき y=(x+1)-(x-3) よって y=4 3≦xのときy=(x+1)+(x-3) y=2x-2 よって したがって, グラフは右の図の実線部分 229 次の関数のグラフをかけ。 *(1) y=|x-2| *(3) y=|x2-4x| 230 次の関数のグラフをかけ。 (1)y=x²-2|x|

回答募集中 回答数: 0
数学 高校生

69.1.2 記述に問題ないですか? 問題がないなら、不要な文など(あれば)教えてほしいです。

1410 基本例題 69 重心と線分の比面積比 右の図の△ABC で, 点D, Eはそれぞれ辺BC, CA の中 点である。 また, AD と BE の交点をF,線分 AF の中点を G, CG と BE の交点をHとする。 BE=9のとき (1) 線分 FH の長さを求めよ。 (2) 面積について, △EBC=[ 練習 69 解答 (1) AD, BE は△ABCの中線であるから, その交点 F は △ABC の重心である。 よって ゆえに FE= BE=1/3×9=3 1 2+1 また, CとFを結ぶと, CG, FEは の中線であるか AFC ら、その交点Hは△AFC の重心である。 2 2+1 よって, FH: HE=2:1から FH= 口 (2) △FBC: △FBD=BC: BD =2:1 よって △FBC=2△FBD また △EBC: △FBC=EB: FB=3:2 ゆえに △EBC= BF:FE =2:1 | △FBD である。 指針 (1)点F は △ABCの中線 AD, BE の交点であるから,点Fは△ABCの重心 そこで,三角形の重心は各中線を2:1に内分するという性質を利用し,線分 の長さを求める。次に, 補助線CFを引き, AFC で同様に考察する。 3 2 (2)△EBCと△FBC, AFBCと△FBD に分けると,それぞれ高さは共通である。 よって、 面積比は底辺の長さの比に等しいことを利用する。 -------- まず, △FBC を △FBD で表し,それを利用して △EBC を △FBD で表す。 880064 CHART 三角形の面積比 等高なら底辺の比等底なら高さの比 AFBC p.407 基本事項 ④ =1/3×2. X2AFBD=3AFBD B ×FE= =1/3×3=2 A F D h h E 右の図のように,平行四辺形 ABCD の対角線の交点を 0, 辺BCの中点をMとし, AMとBDの交点を P 線分 OD の中点をQ とする。 (1) 線分PQの長さは,線分BDの長さの何倍か。 (2) △ABP の面積が6cm²のとき m. m 00000 B B かくれた重心を見つけ出す /G F D Pl A A H M 高さは図のんで共通。 ∴ 面積比=BC : BD C 高さは図のん で共通。 面積比=EB:FB 注意: は 「ゆえに」を表す 記号である。 0 Sut ) 指 C △定 定 AI よゆよ ま 944

回答募集中 回答数: 0
数学 高校生

写真の問題の赤線部についてですが、 z,p,qをそれぞれ、OZ→,OP→,OQ→と定めると、(以下、矢印記号は省略します)z=p+qtはOZ=OP+tOQとなることから、赤線部のようなことは言えないのではないのでしょうか?もし、1番下のポイントに書いてあるように関係式が、O... 続きを読む

28 直線 (ⅡI) 複素数平面上に2点 α=1+2i, β=2+i が与えられている.この2 点を通る直線上の点zは,実数t を用いて, z=(1+t)+(2-t)i と表せ ることを示せ. △△ xy平面で考えるとαとは (1,2)のことで, βとは (2,1) のことだから, 求める直線は, 2点 (1,2),(2, 1) を通る直線になります. このイメージで解答をつくっていけばよいのです. 精講 **** 20 47 解答 ポイント α限が一直線上にあることを 表している。 3 1 O a 複素数平面上の2点α, βを通る直線は z=a+(β-a)t (t: 実数)と表せる PS 22 z-a=t(β-α)より、 子供え z=α+ (B-α)t =(1+2i)+(1-i)t =(1+t)+(2-t)i 今回で 注 この結果を逆に考えれば, z=x+yi において, x,yがパラメーメニド 夕tの1次式で表されているとは直線上を動いていて, z をt につ いて整理すれば z = p+gt (p,q: 複素数)と表せ, zの軌跡は点が を通り,傾き q方向に動いてできる直線になります. ( 演習問題28) 47210 1 2 3 IC のイメージ 直az=ta の豆は直線上 にある。 ImHg

回答募集中 回答数: 0
数学 高校生

(2)のしたがって以降からわかりません。 解説お願いします🙏

A 10km Bdkm C 4人 2人 [2] 右の図2のように, A地点B地点、C地点がこの順にあ り, A地点からB地点までの距離が10km, B地点から C 地点までの距離がdkm (d>0) である場合について考える。 A地点に4人, B地点に2人, C地点にc人 (c>0) がいるとする。 集まる場所はA地点から 図2 C地点までの間と考えてよいから、A地点から集まる場所までの距離を xkm (0≦x≦10+d) とし、移動コストをykm とする。 yは絶対値記号を一つ含むxの関数として与えられる。この関数はy= | に当てはまるものを、次の⑩~③のうちから一つ選べ。 4.x+2|x-10|+c(x-10-d) ② 4x+2(x-10)+clx-10-d である。 ケ ②x=16 ① 4x+2|x-10/+c(10+d-x) 4x+2(10-x)+clx-10-d (1) c=1, d=6のときについて考える。 y が最小となるのはxの値がどのようになるときかを、 次の⑩⑥のうちから一つ選べ。 ただし, 例えば x = 11 のとき,かつ,そのときのみでyが 最小となるときは⑥を選択すること。 (0) x = 0 ①x=10 (3) 0≦x≦10 を満たすすべての実数 (4) 10≦x16 を満たすすべての実数 ⑥ x = β (10<B <16) (5) x = a (0 < a < 10) (2) B地点に集まるときのみ, 移動コストが最小となるようなcの値のうち,最も小さいもの は 最も大きいものは サ である。 (配点 15) (公式・解法集 6

回答募集中 回答数: 0
数学 高校生

右側のステップ4のx=aを代入するとのところからわかりません

第6章 微分法と積分法 第3節 積分法 8-1 定積分の定義 定積分 ●定積分とは| ② グラフy=f(x)とx軸、y軸、y軸に平行な直線で囲まれた部分の 面積は、関数f(x)とどのような関係にあるか? f(x)=1 f(x)=x f(x)=x+1 f(x)=x² f(x)=x³ を求める計算! y=f(x), x軸で囲まれた 10~xの面積 横 C te² 1/2x2x 1/3x ² 3 ●積分と微分の関係 ? a≦x≦bの範囲でf(x)≧0のとき一簡単にするため y=f(x)、x軸、x=a、x=bで 囲まれた部分の面積Sを求めよう! step. 1 αからxまでの面積をS(x) とする。 S(th) O ol a y 2 求める面積を微分すると、 関数f(x)になる y=f(x)のグラフで囲まれた面積を計算するときは、 微分の逆をする x x 1x S(xXx) 積分する x+1 xh S(b)=S b S(2ch) step. 2 xからx+hの間で、f(x)の最大値をM (x,f(x)) 最小値をm とする y=f(x) step.3 aubの面積 右の図より、 mh≤S(x+h)-S(x) ≤Mh S(x+h)-S(x) -SM h h→0のとき ms. (f(x)] [5'(x)] よって step.4 境界線を横行すると面積この逆 両辺をxで不定積分すると、 $CON S(x)=f(x)dx=F(x)+C x=a を代入すると よって f(x) [S'(x)=f(x) 面積を微分すると. 境界線になる S(a)=F(a)+C 0=F(a)+C C=-F(a) S(x)=F(x)-F(a) 範囲a~b ※f(x)を積分して、それに を代入したものから (x) x を代入したものを 引いてね、という記号 S(x+h) -S(x) ※F(x) という数に x=0を代入したものから a x ↑ ●定積分の定義と記号 <定積分の定義> F'(x)=f(x)のとき f(x)dx=[F(x]=F(b)-F(a) を代入したものを 引いてね、という記号 x+h すなわち m W 9 x=bを代入すると x+h S(b)=F(b)-F(a) S=F(b)-F(a) [[例13] 面積Sは、こうやって 計算することができる! ※ただし、 20に限る 14 a x=aからx=bまで 関数f(x) をxで 定積分する、という

回答募集中 回答数: 0
数学 高校生

答え教えて欲しいです!

1 次の 0000 ベーシック数学 O O 平方 (2乗) すると9になる数は ① 】 である。 ○ 平方すると 25 になる数は【②】である。 一般に平方してαになる数を、α の【③】という。 「正の数の平方根は,正と負の2つある。 記号√(【④】 : 読み方 『ルート』)を用いて, 氏のおけるCDまたはでます。 平方根を、を用いずに表せる場合は、高 ○ 平方すると2になる数は【⑦】 の平方根であり, これを根号で表すと, 【⑧】である。 (①②のような場合) 【⑧】 を小数で表すと 「±1.41421356・・・」 と限りなく続く数となる。 A レベル 】にあてはまる語句・数字・式を答えよ。 (あてはまるものは全て答えよ) 2 次の数の平方根を求めよ。 ① 16 ①3 3 根号を使って、次の数の平方根を表せ。 が成り立つ。 O a√b=√√ 6 lxb 2 6 次の計算をせよ。 ①√2x3 4 次の 【 ○√は7の平方根の【①】 の方である。 O 【②】 は64の平方根の負の方である。 -100を根号を用いないで表すと, 【③】となる。 】にあてはまる語句・数字を答えよ。 ①には「正」か「負」かのどちらか答えよ。 " 64 5 次の 【 】 にあてはまる文字式を答えよ。 ○ 平方根の積と商は,正の数a,b について, √a×√b=√[ © ]×[ © ] √a ± √b = √ª = √! Ⓡ √b VI 1 a 81 ② 10 2 √12+√2 b 6 2-7 (a,b は正の数) ① 2~3 ⑧ 次の数 ① 回 次の を使っての外にある数を√の中に入れたり、√の中にある数をの外に出したりすることが できる。 3 O

回答募集中 回答数: 0