学年

教科

質問の種類

数学 高校生

ロピタルの定理をわかりやすく説明してください

スマー の例 入の ※解 青 の2 ※解 い 日入選程学 8 160 |練習 ④92 解答 演習 例題 92 ロピタルの定理を利用した極限 (1) lim- x→0 ロピタルの定理を用いて,次の極限値を求めよ。 x-log(1+x) x² (1) は 指針 ロピタルの定理 (以下)は、 まず前提条件 lim f(x) が不定形 (10) のとき や g(x) また 0 また f' (x) lim x-a g'(x) (2) は また ( 2 ) 分母・分子を微分した式の極限 lim- x-00 (1) f(x)=x-log(1+x), g(x)=x2とすると 1 f'(x)=1- 1+x したがって f'(x) lim x-0 g'(x) とすると (1) lim x→0 したがって の不定形で (3)の0×(−∞)は変形するとの不定形になる。 (x²)' もまた な場合は,更に分母・分子を微分した式の極限を考える。 (e²x), x-log(1+x) x² (2) f(x)=x^2,g(x) = ex とすると lim x-x0 g"(x) lim x→0 XC -=lim x→0 lim X→∞ f'(x) lim x++0 g(x) (2) lim -=1 (有限確定値) ならば lim -=lim X→∞ x² e²x x→+0 x² x+∞0 0²x (3) lim xlog x x→+0 f'(x) = - =1/1₁ x f'(x)=2x,g'(x)=2e2x, f"(x)=2, g" (x)=4e²x f" (x) 500 2 4e2x =0 EXCOVE x 1+x=lim 2 (1+x)=1/ 2x x→02(1+x) 2 1 x 1+x '(x)=2x =0 x -=lim x→+0 1 x² したがって limxlogx = 0 を確かめてから適用する。 (3) xlogx= logx であるから, f(x)=10gx,g(x)=1 1 g'(x)=- 1 (2) lim 20 1 x² エール g(x) x→+0 f(x)=1 lim(-x)=0 ロピタルの定理を用いて,次の極限値を求めよ。 ex-e-x x-sinx x x→0 x2 8 8 18 の不定形になる。このよう 00000 p.159 参考事項 |lim{x-log(1+x)}=0, x→0 limx2=0 x→0 x→0であるから, x=0の近くで考える。 X18 <lim limx2=8, lime²x=8, lim2x=∞, lim2ex = ∞ lim f" (x ) g" (x) f' (x) g'(x) X-∞ lim =8 x→+0 x → =1=> =lim x-a =l <lim logx= -8, x→+0 (3) lilog 1 x+1 f(x) g(x) ②86 f(x)= EXER ③87 平均値 (1) 注意 ロピタルの定理は, 利用価値が高い定理である 高校数学の範囲外の内 容なので、 試験の答案とし てではなく、検算として使 う方がよい。 (2) (1) (2) ④88 関数 (1) (2) (3) ④89 (1 (2 HINT

解決済み 回答数: 1
数学 高校生

赤で囲った部分、なんでマイナスになるのですか?

基本例題 次の極限値を求めよ。 (1) lim (1/2/logsx + 10ga(√3x+1-√/3x-1 x →∞0 解答 P.82 基本事項/ 指針 (1) 対数の性質 klogaM=loga M, loga M+loga N = loga MN を利用して {}内を10gsf(x) の形にまとめる。 そして, f(x) の極限を考える。 (1) 1/12 logsx+log (3x+1-√3x-1) (2) ∞-∞の形 (不定形) で 無理式であるから, まず 有理化を行い, 分母・分子 8 xでくくり出す。このとき, x∞であるから、 x<0 として変形すること 注意。 x<0のとき,√x=xではなくて、x= =-x である。 なお,別解 のように,x= -t の おき換えで, t→∞の問題にもち込むのもよ =log3 √x+log3- (3x+1)-(3x-1) √3x+1+√3x-1 =10g3- ② 51 (与式)=limlogs X→∞ =lim log3 818 2√x √3x+1+√√3x-1 =logs 2 2√3 (2) lim(x+3x+x) = lim =lim 2√√x √3x+1+√3x-1 2 3+ (x²+3x)=x² √√x²+3x-x 3x =lim =lim x 1 2 習 次の極限値を求めよ。 + lim P-31 +1 -3 3 2 8 3-1 =lim -Ⅰ)} であるから 3x √√x²+3xx 3 2 別解xt とおくと→のときし○○である lim (√x+3x+x)=lim(√√²-3t-t) (1) lim(log: (8r+2)-2log(5x+3)} (2) lim (√√²+x+1+x) 3 (3) 1+ <-3t -lim-31+t 3 -1 (2) lim (√x2+3x+x) 3 2 lim (3x+1+ X-8 0000 (2) 中部大,関西) -logsx=logaxi =log3√x は √3x+1-√3x-1 と考えて、分母・分 √3x+1+√3x-12 ける。 ■分母・分子をxで割 分子の有理化。 x<0のとき √x²=-x に注意。 であるから 変形する よってp=t 解答 練習 ③57 PRI 次 (1. |指 (2) C す for 次の lin x→

解決済み 回答数: 1