学年

教科

質問の種類

数学 高校生

なぜ1<x<4と4≦x<7と場合分けするんですか?

2 正弦定理と余弦定理 241 例題 124 三角形の成立条件 **** 3辺の長さが3, 4, xである三角形について,次の問いに答えよ. (1)xのとり得る値の範囲を求めよ. この三角形が鋭角三角形となるようなxの値の範囲を求めよ. 3 考え方 (1) たとえば, 3辺の長さが3, 4, 9では、 4 で三角形ができない. 9 AST 三角形ができるためには,a+b>c が成り立つ必要がある. (2) 鋭角三角形となるのは,最大の角が鋭角のときである。 最長となる辺の対角が最大となるので, 4とxを比較する. (辺と角の大小関係は p.425 参照) 解答(1)3辺の長さが3,4,xの三角形が存在する条件は, [3+4>x x+3>4 x+4>3 C a,b,c を3辺の長 さとするならa>0, これより, 1<b>0c0 が必要 (2)(i)1<x<4 のとき,最大の角は長さが4の辺の対 角である. それを とすると, α <90°となるため には, cosa= x2+32-42 2.x.3 >0x2+32-40 これより, x<-√7.7x JEJEVUJI これと 1 <x<4より,√7<x<4 (ii) 4≦x<7 のとき,最大の角は長さがの辺の対 角である。 それをβ とすると, β <90° となるため には, cos β= 32+42-x2 2・3・4 ->0 32+42x20 これより, 5<x<5 大 これと 4≦x<7より, 4≦x<5 であるはずだが,こ れらは,三角形の成 立条件の3つの式か ら導かれる.(次ペ ージのColumn 参照) 最大角をみるために は、場合分けが必要 一般に Aが鋭角 ⇔ b2+c>d を用いてもよい。 よって, (i), (ii)より, √7 <x<5

解決済み 回答数: 1
数学 高校生

高一です。 普通cosがわかっていてsinを出すには sin2乗=1-cos2乗 という式を使って求めるのにこの解説ではcos60°から急にsin60°となっていてよくわかりません。式を使わなくても良い時とダメな時を教えてくださいm(_ _)m

の二等分線と 事項 2.基本162) D=xとして、 では、正八角 A 60° 5 基本 165 円に内接する四角形の面積 (1) 00000 円に内接する四角形 ABCD において、 AB=2, BC=3,CD=1, ∠ABC=60°と (2) AD の長さ する次のものを求めよ。 (1) ACの長さ 指針 (3) 四角形ABCDの面積 基本163 (I) AABC, 円に内接する四角形の対角の和は180° このことを利用して解く。 269 において、 「2辺とその間の角」 がわかっているから 余弦定理。 (3) .267 例題 163 で学んだように、2つの三角形 △ABC, AACD に分けてそれ (2) ∠B+ <D=180° より, ∠Dの大きさがわかるから, △ACD において 余弦定理。 ぞれに対し三角形の面積公式を用いる。 1 対角線で 2つの三角形に分割 2 円に内接なら (対角の和) 180°に注意 CHART 四角形の問題 (1) △ABCにおいて, 余弦定理により AC=2°+32-2・2・3 cos 60° IKA C どの三角形に対しての余 解答 -13-12-7 弦定理か、きちんと示す。 2 D AC > 0 であるから AC=√7 円に内接する四角形 60° \1 (2) 四角形ABCDは円に内接する B 03 IC から 和は 180° ZD=180°-∠B AOB =180°-60°=120° よって, ACD において,余弦定理により AC2=CD2+AD2-2・CD・AD cos∠D (√7)²=12+AD2-2・1・AD cos 120° AD2+AD-6=0 ゆえに よって ゆえに AD> 0 であるから (AD-2) (AD+3)=0 AD=2 4章 三角形の面積、空間図形へ (3)四角形ABCD の面積をSとすると(A-081) nies S=△ABC+AACD =1/21・2・3sin60°+1/23・2・1・sin 120° AABC =1/2AB AB・BCsin∠ABC √3 √3 =3· + =2√3 2 2 ADHD AACD + = -12AD・CD sin∠ADC CAD 練習 円に内接する四角形ABCD において, AD // BC, AB=3,BC=5, ∠ABC=60° と 165 する。 次のものを求めよ。図る (1) AC の長さ (2) CD の長さ

解決済み 回答数: 1
数学 高校生

K3-1 シスセについてなのですが、太郎さんが二次方程式が異なる2つの正の実数解を持つことと言い換えられるからと書いてある部分から、クケコサ(3枚目の写真の蛍光ペンを引いた部分)を判別式したのですが、Tは0より大きいから-2√3がいけないのは理解できるのですが、4はどうやっ... 続きを読む

A t 2600 C x 16+4/ =-2x+16- it 数学Ⅰ 数学A K 600 13:16+60 BC-4BC+3=0 (BC-1)(BC-3)=0 [2] 以下の問題を解答するにあたっては,必要に応じて8ページの三角比の表を用 いてもよい。 1,3 (1)△ABCにおいて, AB=4, AC = 13, ∠ABC=60°とする。 このとき, BC = カ または BC= キ である。 ただし, カキとする。 (2) 太郎さんと花子さんは, (1) のように △ABCの2辺AB, ACの長さと ∠ABCの大きさを決めたとき, それらを満たす △ABC が二つ存在するための 条件について調べている。 (i)t を正の実数とし, △ABCにおいて D30をすると. 12-1570 t=vis (ピン15 t=√15 数学Ⅰ 数学A BC=x とし, △ABCに余弦定理を用いると, xの2次方程式 x 16×2X x²- ク2x+ ケコ +サ =0 ② D=(-2)^2-41116-1)=4-64+4+2 64 が得られる。 ② が異なる二つの正の解をもつ条件を考えることにより, ①を満たす 16g △ABC が二つ存在するようなtの値の範囲は D=4-4×1×116-12) 42 64 シ セ << • 4+412-64-0 15 4160 412-60=0 y 25 であることがわかる。 2t2-30:0 (i) 0°0 <180° とし, △ABCにおいて +2-15-0 #215 AB=4, AC = t, ∠ABC=60° とする。 4 AB=4, AC=√13, ∠ABC=8 ① C ③ B とする。 太郎 : ① を満たす △ABC が二つ存在するためのtの条件はどうなるの かな。 x²-40x+3=0 二つ存在するための必要十分条件として ソ が得られる。 13:16+-4Cx として (i) と同じように考えることにより, ③を満たす △ABCが 太郎: △ABC が二つ存在することは, その2次方程式が異なる二つの 正の解をもつことと言い換えられるから...。 花子: 辺BC の長さをxとおいて △ABCに余弦定理を用いると,定数 tを含むxの2次方程式が得られるね。 その2次方程式の実数解 に着目するのはどうかな。 X の解答群 ⑩ cost > 30 16 ① cos> √3 ② √13 も 4 COS > 8 APPLA B THE (-2)-4(16-(+) 54× 11-64-44220 18+2==0 (数学Ⅰ 数学A第1問は次ページに続く。) HILS したがって, 三角比の表より, 0°8≦ タチ のとき③を満たす 60 (2-1)2-1416-12 =(-1)2+15-12 △ABCは二つ存在し, +1)=6 タチ +1 0 180°のとき③ を満たす △ABC はただ一つだけ存在するか,または存在しない。 ただし,√31.73, 133.61 とする。 0 0 (数学Ⅰ 数学A 第1問は次ページに続く

解決済み 回答数: 1