学年

教科

質問の種類

数学 高校生

78.2 一つ目の計算のQR/RP×...のメネラウスの定理を用いた計算がどういうことかわかりません。 恐らく2枚目の写真のようなメネラウスの定理を用いた解き方をしていないですよね??

点をそ それぞ 創価大] [基本 76 A 1 M R 自形と線分 ると +n 1 3n 4 3 重要 例題 チェバの定理の逆・メネラウスの定理の逆 △ABCの辺BC上に頂点と異なる点Dをとり、∠ADB,∠ADC の二等分 線が AB, AC と交わる点をそれぞれE,F とすると, AD, BF, CEは1点で 交わることを証明せよ。 (2) 平行四辺形ABCD 内の1点Pを通り, 各辺に平行線を引き, 辺AB, CD, BC, DA との交点を,順に Q,R, S, T とする。 2直線 QS, RT が点0で交 わるとき,3点O,A,Cは1つの直線上にあることを示せ。 SLA OD 98 針 (1) ADB において,∠ADB の二等分線 DE に対し DA AE = DB EB 1 △ADCにおける ∠ADCの二等分線 DF についても同様に考え, チェバの定理の逆を 適用する。 00:08AE) (2) APQS と直線 OTR にメネラウスの定理を用いて QR.PT.SO =1 RP TS OQ ここで,平行四辺形の性質から PT, TS, QR, PR を他の線分におき換えて メネラウス の定理の逆を適用する。 89 解答 85 A001 (1) DE, DF は,それぞれ ∠ADB, ∠ADCの二等分線であるか | 内角の二等分線の定理 130100400N (1) ROJA 5 DA AE DC CF DB EB' DA FA ゆえに AE BD CF DA BD DC EB DC FA DB DC DA よって, チェバの定理の逆により, AD, BF, CE は1点で交わ る。 = (2) APQS と直線OTR について, メネラウスの定理により QR PT SO RP TS OQ 練習 ③78 BC AQ.. SO -=1 CS AB OQ =1 P12月 200 PT=AQ, TS=AB, QR=BC, PR=CS であるから 28-3 -=1 FILE CONTE すなわち p.419, 420 基本事項 ②,4 QABC SO ABCS OQ 1 よって, メネラウスの定理の逆により, 3点 0, A, Cは1つの 直線上にある。 LAQBSと3点O,A,Cに注目。 B (2) O 15173172 A Q BS 'P D C D R (1) △ABCの内部の任意の点を0とし, ∠BOC, ∠COA, ∠AOB の二等分線 と辺BC, CA, AB との交点をそれぞれP, Q, R とすると, AP, BQ, CR は 1点で交わることを証明せよ。 (2) △ABC の ∠Aの外角の二等分線が線分BC の延長と交わるとき, その交点 をDとする。 ∠B, ∠Cの二等分線と辺 AC, AB の交点をそれぞれE, F とす p.429 EX54 ると,3点D,E,Fは1つの直線上にあることを示せ。 423 3 チェバの定理、メネラウスの定理 3章 11 あ n進 いう。 14234 あ -1) るな を満 2. 数で ① へ。 ある たと 数は,

未解決 回答数: 1
数学 高校生

右側のステップ4のx=aを代入するとのところからわかりません

第6章 微分法と積分法 第3節 積分法 8-1 定積分の定義 定積分 ●定積分とは| ② グラフy=f(x)とx軸、y軸、y軸に平行な直線で囲まれた部分の 面積は、関数f(x)とどのような関係にあるか? f(x)=1 f(x)=x f(x)=x+1 f(x)=x² f(x)=x³ を求める計算! y=f(x), x軸で囲まれた 10~xの面積 横 C te² 1/2x2x 1/3x ² 3 ●積分と微分の関係 ? a≦x≦bの範囲でf(x)≧0のとき一簡単にするため y=f(x)、x軸、x=a、x=bで 囲まれた部分の面積Sを求めよう! step. 1 αからxまでの面積をS(x) とする。 S(th) O ol a y 2 求める面積を微分すると、 関数f(x)になる y=f(x)のグラフで囲まれた面積を計算するときは、 微分の逆をする x x 1x S(xXx) 積分する x+1 xh S(b)=S b S(2ch) step. 2 xからx+hの間で、f(x)の最大値をM (x,f(x)) 最小値をm とする y=f(x) step.3 aubの面積 右の図より、 mh≤S(x+h)-S(x) ≤Mh S(x+h)-S(x) -SM h h→0のとき ms. (f(x)] [5'(x)] よって step.4 境界線を横行すると面積この逆 両辺をxで不定積分すると、 $CON S(x)=f(x)dx=F(x)+C x=a を代入すると よって f(x) [S'(x)=f(x) 面積を微分すると. 境界線になる S(a)=F(a)+C 0=F(a)+C C=-F(a) S(x)=F(x)-F(a) 範囲a~b ※f(x)を積分して、それに を代入したものから (x) x を代入したものを 引いてね、という記号 S(x+h) -S(x) ※F(x) という数に x=0を代入したものから a x ↑ ●定積分の定義と記号 <定積分の定義> F'(x)=f(x)のとき f(x)dx=[F(x]=F(b)-F(a) を代入したものを 引いてね、という記号 x+h すなわち m W 9 x=bを代入すると x+h S(b)=F(b)-F(a) S=F(b)-F(a) [[例13] 面積Sは、こうやって 計算することができる! ※ただし、 20に限る 14 a x=aからx=bまで 関数f(x) をxで 定積分する、という

回答募集中 回答数: 0
数学 高校生

(2)についてa二乗=b二乗の部分まではわかったのですがその後のa>0などの部分がよく分かりません。なぜa,bが0より大きいと分かるのか教えて欲しいです

れます。 ことを D D 応用問題 3 三角形 ABCにおいて,次のそれぞれの条件が成り立つとき、三角形 ABCはどのような三角形であるか調べよ。 (1) asin A + bsinB=csinC (2) bcos A=a cos B 精講 三角比の関係式から三角形の形状を決定させる問題です。このよう な問題では, 三角比を, 正弦定理や余弦定理を利用してすべて辺の 長さ a,b,c を用いて表すことがポイントになります。それにより、三角比 の関係式は「辺の長さの関係式」にすり替わります。 例えば、三角形ABCの外接円の半径をRとすると,正弦定理より a b C =2R sin A sin B sin C C ですので,これを sin A, sin B, sin C について解くと、 a sinA= sin B= b 2R sinC= 2R' となります. (1) ではこれを利用します.また, 余弦定理より. c²+a²-b² cos A = b²+c²-a² 2bc 2ca などが成り立ちますので, (2)ではこれを利用しましょう 解答 (1) 三角形 ABCの外接円の半径をRとすると, 正弦定理より, sinA=- b 2R' sinC= これを与えられた等式に代入すると, a² 62 C² + 2R 2R 2R a 2R' cos B= sin B=- 6²+c²-a² 2bc すなわち a²+b2=c2 TEI Cont よって, 三角形ABC は C=90°の直角三角形である. (2) 余弦定理より, cos A= これを与えられた等式に代入すると, b²+c²-a²c²+a²-b² = C 2R HEAR cos B= C 2R c² + a²-6² 2ca b²+c²-a²=c²+ a²-b², a²=b² 2c 2c a> 0,6>0 より, a=b よって, 三角形ABC は CA = CB の二等辺三角形である. 第3章

未解決 回答数: 2
数学 高校生

3番です。記述に問題ないですか?

-12 -2 -14 -7, c=1 解答 (1) (ア) 両辺に2を掛けて x2+3x-20=0 通因数の 誤り。メニムー なっ! (イ) 両辺に√2を掛けて 2x²-5√2x+4=0 -3±√32-4·1· (−20) 2.1 よって こなってしまう よって に代入。 次の2次方程式を解け。 3 (ア) -0.5x2-. -x+10= 0 2 ものと考えて CONTOR (イ)√2x2-5x+2√2=0 (2) 方程式3(x+1)^+5(x+1)-2=0 を, おき換えを利用して解け。 (3) 方程式x2+x+|x-1|=5を解け。 [ (3) 金沢工大] 指針 (1) 係数に小数や分数, 無理数が含まれていて, そのまま解くと計算が面倒になるから, 係数はなるべく整数 (特に2次の係数は正の整数) になるように 式を変形。 (ア) 両辺を (-2) 倍する。 (1) 両辺を2倍する。 (2)x+1=Xとおき, まずXの2次方程式を解く。 (3)p.69 基本例題 40と方針はまったく同じ。||内の式=0となるxの値はx=1であ ることに注目し, x≧1, x<1の場合に分ける。 x= x= 2次方程式の解法 5√2±√(-5√2)^-4・2・45√2±3√2 2・2 したがって x=2√2, √2 2 (2) x+1=X とおくと 3X2+5X-2=0 ゆえに (X+2)(3X-1)=0 1 すなわち x +1 = -2, 3 (3) [1] x1のとき, 方程式は 整理すると x2+2x-6=0 x≧1 を満たすものは [2]x<1のとき, 方程式は 整理すると x2=4 x<1を満たすものは [1], [2] から 求める解は よって ゆえに x=-2 x=-1+√7 よって -3±√89 2 = x2+x+x-1=5 よって X x=-2.1/13 x=-3, x2+x-(x-1)=5 4 x=-1±√7 x=±2 x=-2, -1+√7 2 3 係数に小数と分数が混在し ている場合、 まず小数を分 数に直す。 つまり -0.5 = - 基本92 √(-5√2)²-4-2-4 =√18=3√2 5√2+3√2=8√2 5√2-3√2=2√2 2→ 6 -1→-1 X_ 3 3 -2 5 2 x-1≧0であるから |x-1|=x-1 この確認を忘れずに。 <x-1<0であるから |x-1|=-(x-1) この確認を忘れずに。 解をまとめておく。 151 3章 11 2次方程式

未解決 回答数: 1