学年

教科

質問の種類

数学 高校生

201.1 増減を調べよ、という問いはこのようにグラフで示すだけでは記述不足ですよね??

基本例題 201/3次関数の増減,極値 次の関数の増減を調べよ。 また,極値を求めよ。 (1) y=x3+3x²9x 解答 (1) y′=3x²+6x-9 p.315 基本事項 ①.② 指針▷関数の増減・極値の問題ではy'の符号を調べる(増減表を作る)。 ①導関数yを求め, 方程式y'=0 の実数解を求める。 ・・・ Z 2② ① で求めたxの値の前後で,導関数y'の符号の変化を調べる。 と塩Bにおける」 CHART 増減極値y'の符号の変化を調べる 増減表の作成 SE GARO th =3(x2+2x-3) =3(x+3)(x-1) ① y=0 とすると x y +: 7 (2) y′=-x2+2x-1=-(x-1)2 y'=0とすると x=1 yの増減表は右のようになる。 よって、常に単調に減少する。 したがって,極値をもたない。 - 3 20 |極大| 27 (2)y=-1/23 x3+x2-x+2 x=-3, 1 yの増減表は右のようになる。 よって 区間 x≦-3, 1≦xで単調に増加, 区間 x y' DÉLY y - FRETCOV0000 |極小| -5 また, x=-3で極大値 27, x=1で極小値-5をとる。 注意 (*) 増加・減少のxの値の範囲を答えるときは,区 間に端点を含めて答えてよい。なぜなら,例えば,v=-3 のとき,u<vならばf(u) <f(v)の関係が成り立つからで ある。 1... 0 + 1053 y'の符号を調べるのに,次のよう雄 身 単なグラフをかくとよい。 (1) (1) y'=3(x+3)(x-1) HOW V -3 1 0 (*) (2) y'=-(x-1) 2 + X $221507 [参考] yのグラフは次のようになる。 YA 1(0)13 (2) 18 1

回答募集中 回答数: 0
数学 高校生

8.2 このように原点を用いて考えてもいいですよね??

396 基本例題 8 座標とベクトルの成分… 平行四辺形の頂点 ①000 ... 3 A(1, 3), B(3, -2), C(4, 1) ³3. (1) AB, BC. CA の成分と大きさをそれぞれ求めよ。 , D (2) 四角形 ABCD が平行四辺形であるとき, 点Dの座標を求めよ。 (3)(2) の平行四辺形について, 2本の対角線の長さを求めよ。 指針▷ (1) O を原点とする。 A(a, a2), B(by, b2) A(0,2²) OA = (a1,a2),OB=(b1,62) であり (2) AB-OB-OA ←後前ととらえると イメージしやすい p.392 基本事項 ④ 基本47 =(bi-α, b2-α2) |AB=√ (b₁-a₁)²+(b₁-a₂)² (2) 四角形 ABCD 平行四辺形 であるための条件は AB=DC - AB=CD ではない! 成分で表す。 SE=1S-F B C [補足] AB=DČのとき、辺ABと辺 DC は平行であり, |AB|=|DC | から2辺AB, すなわ ゆえに あることの条件)ことがいえる。 平 (3) 対角線の長さは |AC|,|BD| である。 (1),(2) の結果を利用。 よって, (1) から また, (2) から よって, 1組の対辺が平行でその長さが等しい(平行四辺形で DCの長さが等しい。 AB=DC BC=(4-3, 1-(-2))=(1,3), |BC|=√1+32=√10 CẢ=(1–4, 3–1)=(−3, 2), |CA|=V(-3)+2=/13 | # い。 (2) D の座標を(α, b) とする。 AND YA 四角形 ABCD は平行四辺形であるから よって ゆえに (2, -5)=(4-a, 1-6) 2=4-α, -5=1-6 a=2, b=6 したがって これを解いて (3) 2本の対角線の長さは |AC|,|BD| である。 |AC|=√13 -0)-8 D(2, 6) (1) AB=(3-1,-2-3)=(2,-5),|AB|=√22+(-5)=√/29(2) AB=DCの代わりに AD=BCなどを考えても = A(1,3)。 A O B(bb) D(a, b) PC(4,1) B(3,-2) |BD|=√(2−3)+{6-(−2)}^= =√65 [注意] 上の例題 (2) で, 「平行四辺形ABCD」 というと1通りに決まるが、 「 4点 A, B,C,Dを れる (下の練習 (2) 参照)。 点とする平行四辺形」 というと1通りには決まらずに、全部で3通りの平行四辺形が考えら EDを見

回答募集中 回答数: 0
数学 高校生

⑶でどうしてx=1/1+hとおいていいんですか?

3 第1章 例題12 はさみうちの原理 (3) a=1+h (h>0) とおくとき、 次の問いに答えよ. (nは自然数) n(n-1) h²を示せ . (1) (1+h)">l+nh+ 2 =0 を示せ (1hi (2) lim; 11-00 n a" 考え方 (1) (1+h)" を二項定理で展開し, 1, nh, h)₁ = 1th 8-1 が何を表しているか考える。 2 (2) (1) で示した式とはさみうちの原理を利用する. (3) monx" より 1/12 x を関連させることを考える。 解答 (1) 二項定理より,n≧2 のとき, (1+h)"="Co+,Cih+++ Cmh" ≧,Cot,Ch+,Cahe =1+ nh+ これは,n=1のときも成り立つ。 n(n-1) ここで, 1100 よって, (1+h)" ≧1 + nh+ 2 a" n(n-1) (2)(1)より,α"=(1+h)" ≧1+nh+ 2 るから、 両辺の逆数をとって,両辺にnを掛けると ① lim →∞ =lim 2100 limnx"=limn よって, (3) 0<x<1のとき, limnx" = 0 を示せ . 2100 11 → 00 n(n-1), 1+nh+ -h² 2 n 1+nh+ + h N n(n-1) 2 n 11 limnx"=0 + -h² n n(n-1) ² 2 1 n 0 よって, ①,②とはさみうちの原理より lim- n n→∞o a" (3) h>0 より,a=1+h>1 であるから, 0<x<1 よ り、x=- (0)とおくと、(2)より, 10mil h² n/ 2 =lim 1140 -=0 (1+AS)(-AS) n→∞0 が成り立つ. 200 h²>0 であ n (1+h)" =lim- 114 0 mil n (2) lim 次の極限値を求めよ.ただし,nは自然数とする. x n 3" (1) limg" 1100 n! -=0 -=0 Think (a+b)" =Coa" Cia 例題 次 n a" う。 ++C₁ »Co=1, „Ch=n „C₂h²= n(n-1) | h² 2 (与式の右辺を表して いる.) n=1のときも成り立 つか確認する. 考え方 n≧1, h>0 より, (右辺) > 0 を作る式変形を行 (1 a 解 ①の右辺の極限を調べ る。 分母, 分子を n で割る. (2) を利用することを考 える. anx" に着目して x= とおいてみる. p.617

回答募集中 回答数: 0
数学 高校生

共通テストデータの分析です。 解答解説の4箇所について理解できなかったので教えていただけると幸いです。

100) X 数学Ⅰ・数学A (2) 太郎さんは、図1のS大回転のリタイア率R の最大値が大きすぎることを 不思議に思い, S大回転の14 レースを調べてみた。 すると, AとBの2レー スは天候不良のためレースが途中で打ち切られ, 打ち切られた後の選手の人数 を完走できなかった人数に含めていた。 そこで, 太郎さんは,出走予定の人数 を X, 完走できなかった人数をY, 打ち切られたことで出走できなかった人数 100 (Y-Z) X-Z をZとして,新しいリタイア率R' (%) を, R' = - で定義した。 その結果, A については、R = 51.7だったのがR' =5.2 になり, B について は,R = 53.7 だったのが R' = 34.1 となった。また,AとBを除く 12 レース については,RとR' の値は等しくなった。 R' R= 図 2 は, S 大回転 14 レースのリタイア率Rと新しいリタイア率R'の箱ひげ 図である。なお,R' の第1四分位数はちょうど 10,R'の中央値は 20 より少 し大きい値であり, R' の第3四分位数は25より少し小さい値である。 ただし、 14個の R の値に同じものはなく, 14 個の R' の値にも同じものはない。 100% x 100(Y-2) X-8 2 0 20 30 40 50 (%) 図2 S大回転のリタイア率Rと新しいリタイア率R' の箱ひげ図 (数学Ⅰ・数学A 第2問は次ページに続く。) R' = 10

回答募集中 回答数: 0