学年

教科

質問の種類

数学 高校生

数IIの三角関数の合成の問題です。 [2]が分からなかったため、解説をお願いします。 合成なのですが、自分のどこが間違っているかわからないので、それも合わせてお願いします。

思考プロセス 例題 162 三角関数の合成 4444 とする。 [1] 次の式を rsin (0+α) の形で表せ。 ただし,r>0, <asa (1) sin0+√3 cost R (2) (2) y = sine-cost 77. -sin0+2cos E, sin(0+ a)=sin cosa + cos sina t 逆向きに考える 変形を考える。 合成 У a²+b2 asin 0+ bcos b =√a+b² (sino+b+ a + cos 0.. √a²+62 ) b COSC = 2 τα ax sina = √√a² + b² a == √a²+b² (sin cos a + cos sina) = a+b² sin (0+α) Action» 三角関数の合成は、加法定理を利用せよ b a+b [1] (1) sin0+√3 cos = 2 sine. 2(sino· 1/1 3 + cose. 2 2 = =2(sino cos+cososin). 3 = 2sin(0+) == (2) -sino + 2 cos0 = √5 {sino-(+)+ = √12+ (√3) - =2 УА √3 P O 1 x 2 + cose. 5 √5 √1)²+22=√5 P УА 2 √5 (sin cosa + cos sina) = √√5 sin(0+α) == tate, a la cosa = -- す角 2 sina = = を満た √5 √5 [2] y = sin-cos = √2 sin √2 sin (0) 8805 x このグラフは,y= sindの (グラフを,0軸を基準にし √2 22 УА 軸方向に2倍に拡 Π Π 4 4 大し,0軸方向に今だけ平 113-- 3 行移動した曲線で、 右の図。 -1 4 44 54 π x 4 P (0.1-) Action $0 7 B 1 グラフのかき方は ® Action 例題 143 19 「三角関数のグラフは、拡 大・縮小と平行移動を考 えよ」 (0 DA

未解決 回答数: 1
数学 高校生

127.1 最後に解答では0<θ<π/2より、と書いていますが 私は0<θ<πと書いてしまいました。 これは減点対象ですか?? またなぜ0<θ<π/2と考えることができるのでしょうか?? 私は2直線があったときに同じ大きさのなす角が2つずつできるので2(α+β)=360°で... 続きを読む

基本 例題 147 2直線のなす角 0000 (1) 2直線√/3x-2y+2=0, 3√3x+y-1=0のなす鋭角0 を求めよ。 (2) 直線y=2x-1との角をなす直線の傾きを求めよ。 esa. 指針> 解答 VERT (1) 2直線の方程式を変形すると CASO COSY PRES -x+1, y=-3√3x+1 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると π m=tane (0≤0<₁ 0+ 2 (1) 2直線とx軸の正の向きとのなす角を α, β とすると,2直線 のなす鋭角は,α <βなら β-α または π-(β-α) で表される。 ←図から判断。 この問題では, tana, tan βの値から具体的な角が得られないので, tan (B-α) の計算に 加法定理を利用する。 公式> 0mag y= √√3 2 図のように, 2直線とx軸の正の向 きとのなす角を,それぞれα, βと すると, 求める鋭角0は0=β-α tanβ=-3√3で, 103 √3 2 tan B-tan a tan0=tan(β-α)= 1+tan Btana tan α= 0<a<であるから 0= 7 3 (2)直線y=2x-1とx軸の正の向き とのなす角をaとすると tang=2 tanattan tan(a+4)= π 4 1 千 tan a tan 4 2-(-3√3-√3)÷{1+(-3√3). √3)=√3 2 もい 2±1 1+2・1 であるから,求める直線の傾きは =-3√3x+1 (複号同順) y= √3 2 sin la co Sa -x+1 -3, -1- 0 Ay 1 3 0 y=2x 4/ B 元 4 10 x ly=2x-1 p.227 基本事項 ② 3293 94 YA n m n 0 +0 2 y=mx+n 単に2直線のなす角を求める だけであれば, p.227 基本事 項②の公式利用が早い。 傾きが m, m2の2直線のな す鋭角を0とすると tan 0= m-m2 1+m1m2 [別解] 2直線は垂直でないから tan 0 -- (-3√3) x 1+√3(-3√3) 2 _7√√3+1 = √3 ÷ 2 2 08から 0= 2直線のなす角は,それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、直線y=2x-1 を平行 移動した直線y=2x をも とにした図をかくと, 見通 しがよくなる。 231 42 4章 24 加法定理

未解決 回答数: 1
数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0