学年

教科

質問の種類

数学 高校生

数IIの(2)がわかりません。 [と〇の部分がわかりません。

96 重要 例題 57 剰余の定 (1) f(x)=x-ax +6 が (x-1)2で割り切 を温以上の整数とするとき、 x-1 を (x-1)で割ったときの余りを 求めよ。 CHART & SOLUTION 割り算の問題 基本公式 A=BQ+R を利用 1 次数に注目 ② 余りには剰余の定理 [学習院大] 基本 53 (1)(x-1)2で割り切れる⇒f(x)=(x-1)2Q)×(左党 ⇒f(x)がx-1で割り切れ、更にその商がx-1で割り切れる。 (2)次の恒等式を利用する。 ただし, nは自然数とし,°=1,6°=1である。 解答 a-b"= (a-b)(a1+α"-26+α"-362++ab"-2+6"-1) (1) f(x) は x-1で割り切れるからdf(1)=0 よって 1-a+b=0 -aa-1 L ,348 10 1 1 -α+1 ゆえに b=a-1.. ・① したがって f(x)=x-ax+α-1 =(x-1)(x2+x+1-α ) ST-A-AS-8-Sa-11-a+1 g(x)=x2+x+1-α とすると よって 3-a=0 ゆえに g(1)=0 a=3 条件から,g(x)も で割り切れる。 これを 1 に代入して b=2 (2) x-1 を2次式 (x-1)2で割ったときの商をQ(x), 余 りを ax + b とすると,次の等式が成り立つ。-xs- x"-1=(x-1)2Q(x)+ax+b 両辺に x=1 を代入すると 1 割り算の基本公式 A=BQ+R ゆえに x"-1=(x-1)2Q(x)+ax-a 0=a+b よって b=-a =(x-1){(x-1)Q(x)+α} x"-1=(x-1)(x"-1+x"-2++x+1)であるから xn-1+x"-2+……………+x+1=(x-1)Q(x)+α) (x-1)2Q(x)+α 1=x であるか b=-a=-n) (S-x)=8の項数はxから 両辺に x=1 を代入すると 1+1+....+1+1= a よって a=n ゆえに したがって、求める余りは nx-n PRACTICE 570 での

解決済み 回答数: 1
数学 高校生

数II複素数の問題です。 下の鉛筆でかいてあるとおりD>0では?

つよう 基本 48 重要 例題 50 2次式の因数分解(2) 4x2+7xy-2y-5x+8y+h がx,yの1次式の積に因数分解できるように, 定数kの値を定めよ。 また、 そのときの因数分解の結果を求めよ。 [類 創価大 ] CHART & THINKING 2次式の因数分解 = 0 とおいた2次方程式の解を利用 基本 20,46 「xyの1次式の積に因数分解できる」 とは, (与式)=(ax+by+c) (dx+ey+f) の形に表 されるということである。 また, 与式をxの2次式とみたとき(yを定数とみる), (与式) = 0 とおいた2次方程式 4x2+(7y-5)x-2y2-8y-k)=0の判別式をDとする と与式は x=(zy-s)+√x-(Py-5) の形に因数分解できる。この因 8 8 数x、yの1次式となるのは、Dが(yの1次式) すなわち」についての完全平方式のと きである。 それは, D1=0 とおいて、どのような条件が成り立つときだろうか? 答 ( (与式)=0とおいた方程式をxの2次方程式とみて 4x2+(7y-5)x-(2y2-8y-k)=0 ① の判別式をDとするとである。 83 int 恒等式の考えにより 解く方法もある。 (解答編 P-80=8+ および p.59 EXERCISES 15 参照) D=(7y-5)2+4・4(2y2-8y-k)=81y2-198y+25-16k 与式がxとyの1次式の積に分解されるための条件は,①の 解がyの1次式となること, すなわち D がyの完全平方式 となることである。 D1 = 0 とおいた」の2次方程式 81y2-198y+25-16k=0 の判別式をDとすると D2-(-99)2-81(25-16k)=81{112-(25-16k)} 44 04-81(96+16k) 2-1 0 D2 = 0 となればよいから 96+16k=0よって=-6 このとき, D=81y-198y+121=(9y-11)2 であるから, ①の解は x= __(7y-5)±√(9y-11)-(7y-5)±(9y-11) 8 8 5 ◆ D1 が完全平方式⇔ 2次方程式 D=0が重 解をもつ 計算を工夫すると 992=(9.11)=81・112 よって 音√(9y-11)=|9y-11| であるが, ±がついて いるから, 9y-11 の 対値ははずしてよい。 すなわち x=y-3-2y+2 4 中 (与式)=4x =(x-3)(x-2y+2)}(S) 括弧の前のを忘れ いように。 =(4x-y+3)(x+2y-2)

解決済み 回答数: 1
数学 高校生

高一三角関数 2枚目のピンクのところはわかるのですが、1枚目のピンクの部分がわかりません。どうしてこの範囲になるのですか。

zacoso+2-1+C2 基本 例題 147 三角関数の最大・最小(2) 文字係数を含む y=2acos0+2-sin20 20 (一貫≧≦基)の最大値をαの式で表せ。 2 y=ct zacose+1 |指針 前ページの基本例題 146と同様に2次関数の最大・最小問題に帰着させる。 ① まず, cos の1種類の式で表し, cos0=x とおくと ② 変数のおき換え 変域が変わる に注意すると 基本 146 y=x2+2ax+1 0≦x≦1 したがって,0≦x≦1における関数 y=x2+2ax+1の最大値を求める問題になる。 よって,軸x=-αと区間0≦x≦1の位置関係で、次のように場合を分ける。 軸が区間の [1] 中央より左側 [2] 中央と一致 [3] 中央より右側 237 1種類で表す HART 三角関数の式の扱い ++2at+1 sincos の変身自在に sin0+cos20=1 2 解答 y=2acos0+2-sin20 =cos20+2a cos 0+1 cos0=x とおくと -Sin =2acos0+2-(1-cos20 ) <sin20+ cos20=1 y=x2+2ax+1 +9² = 1 3=1-C 2 一覧 π であるから f(x)=x2+2ax+1 とすると f(x)=(x+a)2+1-02 y=f(x) のグラフは下に凸の放物線で,軸は直線x=-α 28 02 1 また, 区間 ①の中央の値は [1]、y=f(x) 2 10-1 F)-2a+2 軸 最大 [1] -a< すなわち ①>1の 2 2. 0-a 11 2 とき, 最大値は f12a2 1 [2]\ y=f(x) [2] とき, 最大値は の すなわち α=- -a=- 軸 2 2 最大最大 2a++2(+tax)-d'+1 cosだけで表す。 -d-a+1) xの変域に要注意! ①の範囲における y=x2+2ax+1の最大値 を求める。 ito+2a+2 <軸が, 区間 ① の中央よ 左側。 <軸が, 区間 ① の中央と -. [s] 4 章 2 三角関数の応用 0 1 1 x 2 > [3]-a 1/2 すなわち 2 とき,最大値は f(0)≠1 よって a> [5] Sfc² = 1 2 1/2のとき2+2, a- のとき 1 1 021-a1 (5-10)+ C-1-5-(s-as-1) -(s-as+ 192 Tu 練習 y=cos @tasino (0≦)の最大値をαの式で表せ。 1/2の [3] y=f(x) 最大 軸 ------ <軸が, 区間 ① の中央よ り右側。 答えでは, [2] と [3] を まとめた。

解決済み 回答数: 1
数学 高校生

次の問題で何故青いところは②に代入しようとするのでしょうか?①はダメなのでしょうか?どなたか解説お願いします🙇‍♂️

思考プロセス 次の連立方程式を解け。 (x+y=1 (1) lxy=-6 ... (2) fx2-5xy = 2 (3) l2xy-y=-1 ② Jx-xy-6y2=0 (2) lx-3y2-2y=8 2 Action》 連立方程式は, 1文字消去せよ |文字を減らす 連立方程式の基本的な解法の流れ 1文字消去 xとyの だけの方程式 連立方程式 x=(yの式) (*) (2),(3)は,①,② ともに2次式である。 (2) ①をxについての2次式とみると, 因数分解を 用いて解くことができる。 既知の問題に帰着 (3) ① x=(yの式) にして ② に代入すると, 式は 複雑になる。 「定数項が0ならば (2) の因数分解の方法に ← (*) はxについて解いた式と みることができる。 ② をy=(xの式) にしても 同様。 (イ) x=3y ... ④ のとき ④を②に代入すると 6y2-2y-8=0 より (3y)-3y2-2y=8 (3y-4)(y+ 1) = 0 4 ゆえに y=-1, 3 ④ に代入すると y=1のとき x=-8 y=4 y =1のとき (ア)(イ)より x=4 ly=-2, x=3(-1)=-3 x = 3.13=4 x=4 [x=-3 4 y=-1, y= 3 (3) ①+②×2より x-5xy+2(2xy-y2)=0 よって x2-xy-2y2 = 0 (x-2y) (x+y) = 0 ゆ x = -y または x=2y (ア) x-y... ③ のとき ③②に代入すると -2y2 y² = より y= + 3 V3 |13 3 =± 3 ... 3 帰着できるかもしれない」 と考える。 (1) ① より y=1-x ③②に代入すると x-x-6=0 より よって x=2,3 ① に代入すると x(1-x)=-6 (x-3)(x+2) = 0 x=2のとき y=1-(-2)=3 x=3のとき したがって y=1-3=-2 [x=-2 x=3 Lv=3, ls=-2 lyを消去し, xだけの2 次方程式をつくる。 1.2 = ③に代入すると /3 3 y = のとき x=- 3 /3 /3 y=- のとき x= 3 3 (イ) x=2y ... ④ のとき ④を② に代入すると 4y-y=-1 3y2 = -1 となり, これを満たす実数y は存在しない。 (2) ① の左辺を因数分解すると (x+2y) (x-3y) = 0 よって x = -2y または x = 3y 右辺が0である①の左 辺が因数分解できるこ とに着目し,xyの式 で表す。(xを消去し /3 x= x 3 3 (ア)(イ)より 3 3 y= 3 3

解決済み 回答数: 1