学年

教科

質問の種類

数学 高校生

数学IIIの双曲線の分野の問題です。 双曲線の接線の式の求め方で、 解答の求め方では①双曲線の式から傾きを求める②傾きaで点(x1, y1)を通る直線の式の公式 によって接線の式を求めているのですが、 僕は双曲線の接戦の公式をそのまま使いました。 そしたら結果が異なってしま... 続きを読む

14:14 12月17日 (日) × No 化学 | 双曲線 : 数学B ⑩傾き既知接線の定数決定 22 y² 4x1 Y₁ 16 64 m を実数とし, 直線l: 2(m²+1)x- (m2-1)y=16m を考える. を 1/1の1次式で表せ (ウ) 直線lがC上の点(第1,3/1)に接するとき [Ra] 4キロのとき 4x1 y=- (x-x)+y1 を満たすときである。 数学III y₁y=4x₁(x-x₁) +y₁² JA 4x-yy=4x²-y12 であり、 これは1=0のときも成り立つ。 直線がこの接線と一致するのは0でない実数kが存在して [2(m²+1)=4xik m²-1=y₁k3 16m=(4x²-yl) ④ 7/33 数学III =1 について, 以下の問いに答えよ. ② より m²+1=2xk ......②' なので, ②③ から(ペール 2 = (2x₁-y₁) kN DES BUCALLA |(dy = ピ よって ④より m= 13-- n (4x²-y₁²) k 16 × (2x+y)(2x-yi) k 16 2x+yi 8 数学A 2x1+11.2 16 -Point! 実数kを 係数比車 2x₁+y₁. (2x1-y₁) k 16 ・・・・・・ () ・接線 Yıy 64 mxix-myly=16m x 21 m ² MIL. myc ℓ:2(mati)xc-(m²-1)y=16m と係数比較して、 mxci=2(m2+1) ニー(m'-`) my : Y = 42₁₁ "ti ①を②に代入して、 m= -1 ①. -=-1)} 2 my12mxi-8 TAH ② 8 20-YI Y! P .x.. I............ 64. : 75% 完了

回答募集中 回答数: 0
数学 高校生

2(1-logx)/x^2=0のxの値の求め方について詳しく知りたいです。 どなたかお願いします🙇 2枚目の考え方であっていますか?

244 関数のグラフの概形 (1) 発展例題163001 基礎例題 150 関数 y = (logx ) 2 の増減, 極値,グラフの凹凸, 変曲点, 漸近線を調べて) グラフの概形をかけ。 CHARI & GUIDE ① 定義域 x, yの変域に注意して, グラフの存在範囲を調べる。 ② 対称性 x 軸対称, y 軸対称, 原点対称などの対称性を調べる。 ③ 増減と値 y'の符号の変化を調べる。 ④ 凹凸と変曲点y" の符号の変化を調べる。 ■解答 関数の定義域は, 10gxの真数条件から 210gx ⑤ 座標軸との共有点 x=0のときのyの値, y=0 のときのxの値を求める。 ⑥ 漸近線x→±∞ のときのりやり→±∞となるxを調べる。 PRO y'=2(logx) (logx)'=- y' xC 20 J² y y"=- y'=0 とするとx=1, yの増減やグラフの凹凸は、次の表のようになる。 75004 1 0 関数のグラフの概形 次の1~6⑥ に注意してかく (2logx)'.x-(2log x)(x)' _ 2(1-logx) x² 1 + 0+fx + : + + e+ y'=0 とするとx=e7 0 極小 変曲点 0 1 lim y=lim (log x)² = ∞ x→+0 x=1で極小値0をとる。 変曲点は,点(e, 1) である。 また, lim logx=-∞ であるから x→+0 x>0< | +- よって, 軸が漸近線である。 以上から, グラフは 〔図] SA ↑ 1 0 1 e (10gx) ≧0であるから、 グラフは y≧0の範囲に 存在する。 150 ズーム UP ←logx=1 から x=e 注意 増減表でよく用いら れる記法 x は下に凸で増加, は下に凸で減少、 は上に凸で増加 は上に凸で減少 を表す。 ま 関 左

回答募集中 回答数: 0