学年

教科

質問の種類

数学 高校生

この問題(2)の黄線がなぜこの条件になるのかと、 赤線の式の立て方が分からないので教えてください🙇

Y4 図形と方程式 (50点) 0 を原点とする座標平面上において, 点 (0, 1) を中心とし, 半径が2である円をCと する。円Cとx軸の交点を A,Bとする。ただし,点Aのx座標は点のx座標より小 さいものとする。また、点Pは円Cの y>0の部分を動くものとする。 (1) 点 A, B の座標をそれぞれ求めよ。 (2) AP2+BP2の最大値と、そのときの点Pの座標を求めよ。 (3) OP2 + BP2の最大値と、そのときの点Pの座標を求めよ。 28 配点 (1) 12点 (2) 18点 (3) 20点 解答 (1) 円Cの方程式は x2+(x-1)2=4 ①において, y = 0 とおくと x2=3 x=±√√3 ・① 中心の座標 (a, b), 半径ra 方程式は (x-a)+(y-b)'=r 点Aのx座標は点Bのx座標より小さいから, 求める点 A, B の座標は A(-√√3,0),B(√30) ASAP (2) -(0574 解法の糸口 A(-√3, 0), B(√3, 0) で まず,点Pの座標を (X, Y) とおいて, AP2+BP2 を X,Yの式で表す。 この式は、点Pが円C上にあること から,Yのみの式にすることができるが、このときYのとり得る値の範囲に注意する。別解のように三角関数を いたり,中線定理を用いたりして考えることもできる。 点Pの座標を (X, Y) とすると,点Pは円C上のy座標が正である点で あるから

解決済み 回答数: 1