学年

教科

質問の種類

数学 高校生

47. このような解答でも問題ないですか?(記述問題) (赤で書いているところは無視してください)

456 OS 00000 基本例題 47 空間のベクトルの平行 4点A(1, 0, -3),B(-1, 2,2), D(2,3,-1), E(6, a, b) がある。 (1) AB//DE であるとき, a,bの値を求めよ。 また,このとき AB:DE= (2) 四角形 ABCDが平行四辺形であるとき, 点Cの座標を求めよ。 基本7,8 FOSF025 指針▷空間においても,1つの平面上で考えるときは,平面図形とベクトルの関係をそのまま用 いることができる。 (1) AB/DE⇔ DÉ=kAB となる実数がある (AB≠0, DE ¥0) (2) 四角形 ABCD が平行四辺形であるための条件は AB=DC (AB0, DC ¥0) AB=CDではない! 計算の際,次のことを利用する。 [平面の場合と同様。 空間ベクトルでは成分が加わる] 2点A(a1,a2,a3),B(b1, 62,63) について AB=(bュ-a1, bz-az, bs-as) 解答 (1) AB//DE であるから, DE=Aとなる実数んがある。 AB=(-2, 2,5), DE=(4,4-3, 6+1) であるから (4, a-3, b+1)=k(-2, 2, 5) ...... (*) -8 よって 4=-2k, a-3=2k, 6+1=5k ゆえに h=-2a=-1,6=-11 また, |DÉ|=|-2AB|=2|AB|から (2) 点Cの座標を(x, y, z) とする。 四角形 ABCD は平行四辺形であるから DC=(x-2, y-3, z+1) であるから AB: DE=1:2 (-2, 2, 5)=(x-2, y-3, z+1) -2=x-2, 2=y-3,5=z+1 AB=DC よって ゆえに x=0, y=5, z=4 よって C(0, 5, 4) 別解 四角形 ABCD は平行四辺形であるからAC=AB+AD よって AC=(-2, 2,5)+(1,3,2)=(-1, 5, 7) ゆえに, 原点を0とすると OC=OA+AC=(1, 0, -3)+(-1, 5, 7)=(0, 5,4) よってC(0, 5,4) 4 firbt AB=kDE として考えても よいが, その場合, kDE は (4k, ka-3k, kb+k) となり、左の解答よりも計 算が面倒になる。 Foll B BO ARE (1) a=(2, -3x, 8), 6= (3x, -6, 4y-2) とする。と 1-21 +0 5 [参考] ベクトルについて, 例えば, (*) を a-3=k 2 のように成分を縦に書く記述法もある。 A B \6+1/ 縦に書くと,x,y,zの各成分が同じ高さになり見やすい, という利点がある。 (-AU-CAD- DS D

回答募集中 回答数: 0
数学 高校生

141. これでも記述大丈夫ですか??

重要 例題 141 n≦k の仮定 数列{an}(ただし an> 0) について、関係式 証明。 は整数 の証明。 (a1+a2+......+αn)=a^²+a2²3+...... +α² が成り立つとき, an=nであることを証明せよ。 指針自然数nの問題であるから,数学的帰納法で証明する。 n=k+1のときを書き出すと ならない。 (1+2+..+k+αk+1)=13+2°+..+k+ak+13 A ・成 となるが, 「n=kのとき成り立つ」 と仮定した場合, ak-1=k-1, ak-2=k-2, り立つことを仮定していないこととなり, A が作れなくなってしまう。 したがって, n≦k の仮定が必要。 そこで,次の [1], [2] を示す数学的帰納法を利用。 [1] n=1のとき成り立つ。 [2] n≦k のとき成り立つと仮定すると, n=k+1のときも成り立つ。 ......... CHART 数学的帰納法 n≦kで成立を仮定する場合あり 解答 [1] n=1のとき, ar²=a3, a>0から ゆえに,n=1のとき α = nは成り立つ。 [2] n≦k のとき, an=n が成り立つと仮定する。 a=1 n=k+1のときを考えると {(1+2+.….....+k)+ak+1}² = 1³ +2³++k³ +ak+₁³ (①の左辺)=(1+2+: ...... +k)+2(1+2+..+k)an+1+αk+12 = { ½ k (k+1) } ³+2+ = =+k(k+1) an+i+anti² =1+2+..+k+k(k+1)ak+1 +ak+1 (k+1)an+1+ak+12=ak+13 2 ①の右辺と比較して ゆえに k10 であるから よって, n=k+1のときにも an = nは成り立つ。 [1], [2] から, すべての自然数nに対して an=nは成り立つ。 ak+1 (an+1+k){ak+1-(k+1)}=0 an+1=k+1 n=1のときの証明。 <n≦k の仮定。 <n=k+1のときの証明。 3: 1 数学的帰納法

回答募集中 回答数: 0
数学 高校生

130. このような具体例(図を書いてみる等)で規則性を考えて解く問題において、どういう感じで記述するのがいいのでしょうか??

582 ①① 基本例題 130 図形と漸化式 (1) ・・・ 領域の個数 平面上に,どの3本の直線も1点を共有しない, n本の直線がある。 次の場合、 平面が直線によって分けられる領域の個数をnで表せ。 (1) どの2本の直線も平行でないとき。 (2) (2) 本の直線の中に, 2本だけ平行なものがあるとき。 指針 (1) n3の場合について,図をかいて考えてみよう。 ヨコ 解答 an (1) n本の直線で平面が α 個の領域に分けられているとする。 (n+1) 本目の直線を引くと,その直線は他のn本の直線で (n+1) 個の線分または半直線に分けられ、 領域は (n+1) 個 だけ増加する。 ゆえに An+1=An+n+1 ¿+(T+5√]$¬1+ よって an+1-an=n+1 また a₁=2 数列{an}の階差数列の一般項はn+1であるから, n ≧2の とき これはn=1のときも成り立つ。 201 ゆえに, 求める領域の個数は __n²+n+2 2 (図のD1~D』)であるが,ここで直線ls を引くと,ls は 42=4 l1,l2 と2点で交わり、この2つの交点で ls は3個の線分また は半直線に分けられ, 領域は3個 (図のDs, Ds, D7) 増加する。 よって as=az+3 2.2-0 PARTY 同様に, n番目と(n+1) 番目の関係に注目して考える。 n本の直線によって α 個の領域に分けられているとき, (n+1) 本目の直線を引くと 域は何個増えるかを考え, 漸化式を作る。 2-14 (2) (n-1) 本の直線が (1) の条件を満たすとき, n本目の直線はどれか1本と平行になる から (n-2) 個の点で交わり, (n-1) 個の領域が加わる。 n-1 an=2+Σ(k+1)=- k=1 n²+n+2 2 (2) 平行な2直線のうちの1本をeとすると,l を除く (n-1) 本は (1) の条件を満たすから,この (n-1) 本の直線で分けら れる領域の個数は (1) から (8+.0) an-1 更に,直線ℓを引くと,ℓはこれと平行な1本の直線以外の 個の点で交わり の領域が増え よって、求める領域の個数は an-1+(n-1)=- (n−1)²+(n−1)+2 2 n²+n 2 +(n-1)=- n=3 Ilz D₂ [類 滋賀大] D3 Do D [=8+₁0 D₁ k=1 Σ(k+1)="Ek+ Z1 =(n−1)n+n-1 D2 a3=7 人 一 (n+1) 番目の直線は n本 その直線のどれとも平行でな いから,交点はn個。 (1) の結果を利用。 l DA αn-1 は, (1) の annの 代わりにn-1 とおく。 e

回答募集中 回答数: 0