学年

教科

質問の種類

数学 高校生

1/2をかけてる理由が分かりません。

380数学 B 練習 白球が3個, 赤球が3個入った箱がある。 1個のさいころを投げて, 偶数の目が出たら球を3個 ② 62 奇数の目が出たら球を2個取り出す。 取り出した球のうち白球の個数を X とすると,Xは確率 変数である。 Xの確率分布を求めよ。 また, P(0≦x≦2) を求めよ。 Xのとりうる値は X= 0, 1, 2, 3 [類 福島県医大] [1] X = 0 となるのは, 偶数の目が出て赤球3個を取り出すか ←個→赤3の事象と 奇数の目が出て赤球2個を取り出すときである。 寄 赤2の事象は互い 排反 よって、P(X=0)=1/2003+/12/16-12/20/20/1/3)=1 5 40 加法定理 C2 [2] X=1となるのは, 偶数の目が出て白球1個と赤球2個を 取り出すか, 奇数の目が出て白球1個と赤球1個を取り出す ときである。 よって P(X=1)= 1 3C1 3C2 1 3C1 3C1 + 2 6C3 2 6C2 21 = 1 9 3 = + 20 5 40 [3] X = 2 となるのは, 偶数の目が出て白球2個と赤球1個を 取り出すか, 奇数の目が出て白球2個を取り出すときである。 よって P(X=2)=1/2 1 3C2*3C1 1 3C2 + 6C3 2 6C2 1 / 9 13 = + b1d 2\20 40 [4] X = 3 となるのは, 偶数の目が出て白球3個を取り出すと ←球を3個取り出せるの きである。 よって P(X = 3) = 1/1.303 1 3C3 1 1 = · 2 20 40 は、偶数の目のときのみ [1]~[4] から, Xの確率分布は次の表のようになる。 また X 0 1 2 3 計 5 21 13 1 ① P 1 40 40 40 40 1 39 (*) 40 40 P(0≦x≦2)=1-P(X=3)=1- (*) P(0≦x≦2) =P(X=0)+P(X=1) +P(X=2) として求め てもよいが、余事象の 率を利用する方が計算 らく。

回答募集中 回答数: 0
数学 高校生

⑵の色の選び方と⑶の色の選び方が何で違うのかと、なんでそのような求め方になるのか教えて欲しいです!!

率 _392 基本事項 並べて固 子音という。 ....★ の方針。 同様に確から 前提にあるた のでも区別し 母音 利用。 並べる。 = 180 (通り) 根元事象が 列も同じ程 でも区別し 38 組合せと確率 本例題 黄の札が4枚ずつあり、どの色の札にも1から4までの番号が1つずつ る確率を求めよ。 全部同じ色になる。 かれている。 この12枚の札から無作為に3枚取り出したとき,次のことが起 色も番号も全部異なる。 [埼玉医大 ] 率 109 EX29\ (1)~(3)の各事象が起こる場合の数α は, 次のようにして求める。 場合の総数Nは, 全12枚の札から3枚を選ぶ 組合せ 123通り 積の法則 (I) (同じ色の選び方)×(番号の取り出し方) (2) 番号が全部異なる。 (②2) 異なる3つの番号の取り出し方) (色の選び方) 同色でもよい。 (3) 異なる3つの番号の取り出し方) ( 3つの番号の色の選び方) 12枚の札から3枚の札を取り出す方法は 赤, 青, 黄のどの色が同じになるかが その色について,どの番号を取り出すかが よって 求める確率は 3C1×4C3_ 3×4 12C3 220 よって 43 札を選ぶ 「順序」にも注目して考えると 色の選び方は 31, 番号の順序は4P3 で 3C1X4C3 12C3 a N 123 通り 3C1 通り 4C3通り 3 55 3通り 取り出した3つの番号を小さい順に並べ, それに対し, 3色を順に黄赤青 対応させる,と考えると,取り出した番号1組について、色の対応黄青赤 が3P3通りある。 /p.392 基本事項 6 220 55 4C3X3P3 4X6 12C3 (3) 1 2 3 赤青 3黄 赤黄青 青 赤 黄 青黄赤 (2)どの3つの番号を取り出すかが そのおのおのに対して, 色の選び方は3通りずつある3つの番号それぞれに対 し,3つずつ色が選べる から、番号が全部異なる場合は 4C3×38通り から 3×3×3=33 4C3X33 4×27 27 よって 求める確率は 12C3 220 55 (3) どの3つの番号を取り出すかが Cg 通りあり、取り出赤,青,黄の3色に対し, した3つの番号の色の選び方が 3 P3通りあるから、色も 1 2 3 4 から3つの数 番号も全部異なる場合は 3×3P3通り よって求める確率は 397 | (1) 札を選ぶ順序にも注目 して考えてもよい。 下の 参考 を参照。 P通り ⑥事象と確率 を選んで対応させると 考えて, 1×4P3 通りとし てもよい。 N = 12P3=12C3×3! a=3C1×4P3=3C1×4C3×3! となる。同様に考えて (2) a=4P3×33 (3)a=P3×3P3 2章 2 [北海学園大 ] 1組のトランプの絵札 (ジャック, クイーン, キング) 合計12枚の中から任意に4 の札を選ぶとき、次の確率を求めよ。 スペード, ハート, ダイヤ, クラブの4種類の札が選ばれる確率 ジャック, クイーン, キングの札が選ばれる確率 スペード クラブの4種類の札が選ばれ, かつジャック, ク n 409 EX 30 、

回答募集中 回答数: 0
数学 高校生

赤線の部分がなぜそうなるのかを教えていただきたいです🥺

学部) その1 D ある。 !」 三y平 =)1³/ p= 数列{an}の初項から第n項までの和 Sm, 数列{bn}の初項から第n項までの和 T, はそれぞれS = Co, T, = 2 km C で表される。 Th= Am 1 Am1 (1) y1を満たす自然数zy について,y+iCjyxCy=xC が成り 立つ。 i,j, p, g をそれぞれz, y を用いて表すと,i= j= 制限時間 ; 35分 である。 (2) 2, b の値をそれぞれ求めると, a2 = キノ (3) S) , をそれぞれの式で表すと, Sm = (4) 6m の式で表すと, bm= である。 (解説) q= (イ)y-1 (ウ) 1 (2) (オ) 2 (*) 20 (3) (+) 2"-1 (4) () (n+1)-2"-2 解答 1 よって また (1) Cy-1Cy=- (x-1)! y!(z-y-1)! 2-y i=7x-1, j=¹y-1 (1) (y-1)!{(x-1)-(3-1)}! (2-1)! (x-1)! y !(z −y)! __y!{(x-1)-Y)}! __Y!(s—y − 1)! ( z —y − 1) = b₁== (x-1)! (y-1)!(x-y)! -=:-1 Cy-1 (x-1)! ₁₂ C₁ = ² + y ! (x−y)! = (y − 1)!(x −y)! よって p=ウェー1,g=-y-1 (2) n≧2のとき an=S„-S-1,b=T-T-1 よって (x-1)! (v-1)!{(z-1)-(y-1)}!=x-1 Cy-1 (3) (1) より,+1Ck=+1Ck+月 Ck であるから a₁ = Sn+1=2m+1Ck=m+1Cm+1+2+1C₂ S₁+1=2.2n-1 (I) y-1 (ク)21 ゆえに S₁₁ = *2" - 1 n≧2のとき, am=S-S-1より az=S2-S1=(2C1+2C2)-1C=*2 b=T-T3=(1-4C1+24 C2 +34 3 +4・C4)-(1・3C1+2.3C2+3.3C3) = (4+12+12+4)-(3+6+3)= #20 k=1 である。 =1+2 (C₁+. C-1) 1+2.c. + E.C. = 2₁ C₁+2, C₁+1=22 C₁+1=2S, +1 ) 番 名前 ( である。 よって Sn+1=2S, +1 これを変形すると Sn+1+1=2(S₁+1) したがって, 数列{S} は初項S1+1=1+1=2, 公比2の等比数列であるから =(2^-1)-(2'-1-1)=2^-1 S=1であるから,①はn=1のときも成り立つ。 よって an="2"-1 別解 二項定理 ① において, よって したがって (4) (1)より, 7 T=1 であ よって したがって b1=Ti= ゆえに

回答募集中 回答数: 0
数学 高校生

この問題は排反事象ではないですか?

328 00000 赤,青,黄の札が4枚ずつあり,どの色の札にも1から4までの番号が1つずつ 練習 確率の計算 (3) 基本例題 38 (埼玉医大) 書かれている。 この12枚の札から無作為に3枚取り出したとき,次のことが起 (3) 色も番号も全部異なる。 こる確率を求めよ。 (1) 全部同じ色になる。 (②2) 番号が全部異なる。 指針 場合の総数N は、 全部で4×3=12 (枚) の札から3枚を選ぶ 組合せであるから 12C3通り あり、どの場合も同様に確からしい。 そして, (1)~(3) の各事象が起こる場合の数αは, 積の法則を利用して求める。 (1) (同じ色の選び方)×(番号の取り出し方) ( 2 ) (異なる3つの番号の取り出し方) × ( 色の選び方) (3)(異なる3つの番号の取り出し方) × (3つの番号の色の選び方) 取り出した番号を小さい順に並べ、それに対し,3色を順に対応させる,と考える。 「(赤,青,黄),(赤,黄,青),(青,赤,黄), *. 例えば、3つの番号 ①1 2 3 に対し 1 つまり, 取り出した番号1組について, 色の対応が3P 3 通りある。 1 解答 12枚の札から3枚の札を取り出す方法は 12 C3 通り (1) 赤, 青, 黄のどの色が同じになるかが 3C通り その色について,どの番号を取り出すかが 4通り ゆえに, 求める確率は (2) どの3つの番号を取り出すかが 4C3通り そのおのおのに対して、色の選び方は3通りずつあるから, 番号が全部異なる場合は 4C3×33 通り +86-21 ゆえに、求める確率は 3C1X4C3 12C3 4C3 X 3³ 12C3 3×4. 3 1220 55 p.324 基本事項 4×27 220 220 27 55 ...... 6 55 同じ色でもよい。 IS> (3) どの3つの番号を取り出すかが 4C3通りあり, 取り出した 赤, 青,黄の3色に対し, 3つの番号の色の選び方が3P 3通りあるから、色も番号も全 部異なる場合は 4C3×3P3通り ゆえに、求める確率は 4C3×3P3_4×6 12C3 = 検付 (1) 札を選ぶ順序にも注目し, N=12P3=12C3×3!, a=3C1×4C3×3! と考える となり 左の解答の式と一致する。 3つの番号それぞれに対し, 3つずつ色が選べるから 3×3×3=33 と, a 3C1X4C3 N 12C3 1,2343つの数を 選んで対応させる,と考え て, 1×4P3通りとしてもよ 音 ((1) (1)

回答募集中 回答数: 0
数学 高校生

・(1)、(2)の解き方はこの方法でも合っているか ・(3)の黄色マーカーのところで、なぜ3C2なのか。  4C3じゃないのか。 ・3C2は赤1と赤2をひとつの塊として考えて、残り 2  個を選ぶという解釈で合っているか ・(3)で、なぜ青と赤を区別しているのか がわかり... 続きを読む

個を選び1列に並べる。 この並べ方は全部で何通りあるか。 EX (1) 赤色が1個, 青色が 2 個, 黄色が1個の合計4個のボールがある。 この4個のボールから (2) 赤色と青色がそれぞれ2個, 黄色が1個の合計5個のボールがある。 この5個のボールか ら4個を選び1列に並べる。 この並べ方は全部で何通りあるか。 (3) (2) の5個のボールから4個を選び1列に並べるとき, 赤色のボールが隣り合う確率を求め よ。 (1) 3個のボールの選び方は,次の [1]~[3] の場合がある。 [1] 赤色1個,青色2個 [2] 青色2個,黄色1個 [3] 赤色1個,青色1個,黄色1個 このおのおのの場合について, ボールを1列に並べる方法は 3! [1] =3 2! =3(通り) [3] 3!=6 (通り) 3! [2] -=3(通り) 2! 3+3+6=12 (通り) よって, 並べ方の総数は (2) 4個のボールの選び方は,次の [1]~[3] の場合がある。 [1] 赤色2個,青色2個 (188 28 [2] 赤色2個,青色1個, 黄色1個 [3] 赤色1個,青色2個, 黄色 1個 このおのおのの場合について, ボールを1列に並べる方法は 4! 269 [3] 2 -=12 (通り) 4! [1] -=6(通り) [2] 112通り 2!2! (FD) 20 JEIS よって, 並べ方の総数は 6+12+12=30 (通り) (3) 5個のボールを赤1, 赤2, 青 1, 青2, 黄とし, すべて区別し て考える。 5個のボールから4個を選び1列に並べる方法は 5P通り 赤,赤2を含むように4個のボールを選ぶ方法は C2通り このとき, 赤,赤が隣り合うように並べる方法は,まず, 赤, 赤を1個とみなして3個のボールを1列に並べる方法が 3!通り そのおのおのについて, 赤, 赤2 の並べ方が2通りあるから [ミュー] 3!×2=12 (通り) よって, 赤, 赤2 が隣り合う並べ方は全部で 3C2×12=36 (通り) 36 5-4-3-2 したがって、求める確率は 36 5P4 3 10 [中央大〕 ← [1], [2] は同じものを 含む順列。 ←同じものを含む順列。 ←確率では、 同じもので も区別して考える。X3 TE 隣り合うものは枠に入 されて中で動かす 2章 [[[確率] EX

回答募集中 回答数: 0
数学 高校生

囲った部分なぜ、式が変わるのか理解できません。 2k-1と2’k-1のやつです。

1 2 ZZZ 初項から第210項までの和を求めよ。 解答 指針 分母が変わるところで区切りを入れて,群数列として考える。 分母: 1|22|3, 3, 34, 4, 4,4|5, 1個 2個 3個 4個 第n群には、分母がnの分数がn個あることがわかる。 分子: 12,3|4,5,67, 8, 9, 10|11 分子は,初項 1,公差1の等差数列である。 すなわち,もとの数列の項数と分子 は等しい。 まず,第 210 項は第何群の何番目の数であるかを調べる。 分母が等しいものを群として,次のように区切って考える。 8 9 67 5 10|11 1 | 2 34 12'23'3' 3 4'4'4' 5 第1群から第n群までの項数は 1+2+3+ ・・・・..+n= n(n+1) =1/√n(n²+1)÷n=² n²+1 2 第210項が第n群に含まれるとすると (n-1)n <210≤ n(n+1) よって (n-1)n<420≦n(n+1) (n-1)n は単調に増加し, 19・20=380, 20・21=420 である から ① を満たす自然数nは n=20UH また,第 210 項は分母が 20 である分数のうちで最後の数 1/2 ・・20・21=210 である。 ここで,第n群に含まれるすべての数の和は 1/27 12.11/2n(n-1)+1}+(n-1)・1) ÷n ゆえに, 求める和は 20k2+1 20 2+¹ -12 +21)-(20-21-41 +20) ²² k=1 2\k=1 .=1445 k=1 [類 東北学院大 ] ...... 練習の累康を分母とする既約分数を,次のように並べた数列 ③ 30 13 2'4'4'8' 8 8 768.1/16 3 5 う " 16'16'16' について、第1項から第100項までの和を求めよ。 1 3 5 いて、 もとの数列の第k項 分子がんである。ま 群は分母が 個の数を含む。 これから第n群の の数の分子は、 n(n+1) は第群の数の分 子の和→ 等差数列の n{2a+(n-1)d} 15 1 16' 32 【類岩手大】 P.460 EX 自然委 (1) 大 料 (2) 1 る 指針

回答募集中 回答数: 0