学年

教科

質問の種類

数学 高校生

127.1 最後に解答では0<θ<π/2より、と書いていますが 私は0<θ<πと書いてしまいました。 これは減点対象ですか?? またなぜ0<θ<π/2と考えることができるのでしょうか?? 私は2直線があったときに同じ大きさのなす角が2つずつできるので2(α+β)=360°で... 続きを読む

基本 例題 147 2直線のなす角 0000 (1) 2直線√/3x-2y+2=0, 3√3x+y-1=0のなす鋭角0 を求めよ。 (2) 直線y=2x-1との角をなす直線の傾きを求めよ。 esa. 指針> 解答 VERT (1) 2直線の方程式を変形すると CASO COSY PRES -x+1, y=-3√3x+1 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると π m=tane (0≤0<₁ 0+ 2 (1) 2直線とx軸の正の向きとのなす角を α, β とすると,2直線 のなす鋭角は,α <βなら β-α または π-(β-α) で表される。 ←図から判断。 この問題では, tana, tan βの値から具体的な角が得られないので, tan (B-α) の計算に 加法定理を利用する。 公式> 0mag y= √√3 2 図のように, 2直線とx軸の正の向 きとのなす角を,それぞれα, βと すると, 求める鋭角0は0=β-α tanβ=-3√3で, 103 √3 2 tan B-tan a tan0=tan(β-α)= 1+tan Btana tan α= 0<a<であるから 0= 7 3 (2)直線y=2x-1とx軸の正の向き とのなす角をaとすると tang=2 tanattan tan(a+4)= π 4 1 千 tan a tan 4 2-(-3√3-√3)÷{1+(-3√3). √3)=√3 2 もい 2±1 1+2・1 であるから,求める直線の傾きは =-3√3x+1 (複号同順) y= √3 2 sin la co Sa -x+1 -3, -1- 0 Ay 1 3 0 y=2x 4/ B 元 4 10 x ly=2x-1 p.227 基本事項 ② 3293 94 YA n m n 0 +0 2 y=mx+n 単に2直線のなす角を求める だけであれば, p.227 基本事 項②の公式利用が早い。 傾きが m, m2の2直線のな す鋭角を0とすると tan 0= m-m2 1+m1m2 [別解] 2直線は垂直でないから tan 0 -- (-3√3) x 1+√3(-3√3) 2 _7√√3+1 = √3 ÷ 2 2 08から 0= 2直線のなす角は,それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、直線y=2x-1 を平行 移動した直線y=2x をも とにした図をかくと, 見通 しがよくなる。 231 42 4章 24 加法定理

未解決 回答数: 1
数学 高校生

これで線より下の部分がわからなくて、線の上から考えて、範囲が2枚目の写真のようになると思ったんですけど、

象限の角で cos<0 COS して 20 めよ 解答 指針 ① 2倍角の公式 sin20=2sin/cos0, cos20=1-2sin"0=2cos20-1 を用いて, 関数の種類と角を0に統一する。 ② 因数分解して,(1) ならAB=0, (2) なら AB≧0の形に変形する。 ③-1≦sin0≦1, -1≦cos 0≦1に注意 して, 方程式・不等式を解く。 CHART 0 と20が混在した式 倍角の公式で角を統一する (1) 方程式から ゆえに よって 0≦0 <2πであるから cos0=0 より sin 0= =1/12/2 2sinocos0= cos0 cos 0(2sin0-1)=0 cos0=0, sin0= より 以上から, 解は DOTHER (2) 不等式から 整理すると ゆえに ↓ であるから 0= よって したがって、 解は 0=- 0= π 3 2' 2 π 6 T 6 ≦02では,cos 0-1≦0 9 TC 5 6 1 2 π π cos 0-1=0, 2cos 0-1≦0 cos0=1,cos0≦ T 5 3 π, 2' 6 2 2cos20-1-3cos +2≧0 2 cos² 0-3 cos 0+1≥0 (cos 0-1) (2 cos 0-1) ≥0 1 1 2 05/1/201 0=0, SOST -π π -1 0 M 5 COS6+2≧0 ② 155 (1) sin20-√2 sin0=0 練習 0≦2のとき,次の方程式、不等式を解け。 (3) cos 20-sin 0≤0 YA 1 π 6 信角の公式を用 3 5 7 3 0 3 0+0 6 π 33 ON 1 x 1 1 x 2+ ・基本 154 sin20=2sin Acos A 種類の統一はできな いが,積=0の形にな るので, 解決できる。 AB=0 ⇔ A = 0 またはB=0 sino 1/23の参考図。 cos 0 0 程度は,図が なくても導けるよう cos28=2cos²0-1 POR cos6-1=0 を忘れな いように注意。 なお,図は cosm の参考図。 (2) cos 20+ cos0+1=0 1 2 (s) dar p.254 EX 98-

未解決 回答数: 1
数学 高校生

223. このような記述でも問題ないですよね? またこの問題での接線を求めるときのプロセス、 ①接線の座標を仮定して接戦の方程式を立てる ②接線が通る点の座標を代入 ③微分を用いて求める という順番で進むのは一般的ですか??

演習 例題223 3本の接線が引けるための条件 (1) 曲線C:y=x+3x2+x と点 A(1, a) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 [類 北海道教育大] 1970 基本 218 である。 る。 指針▷ 3次関数のグラフでは、接点が異なると接線が異なる(下の 検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける 針の① の 曲線C上の点 (t +3t'+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, t3+3t+t) における接線の方程式を求め,これが点 (1,α) を 通ることから, f(t)=a の形の等式を導く。 ・・・・・・ CHART 3次曲線 接点 [接線] 別なら 接線 [接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, 3+ 312+t)に おける接線の方程式はy-(t+3t+t)=(32+6t+1)(x-t すなわち y=(3t2+6t+1)x−2t−3t2 ばよい。 この接線が点 (1,α) を通るとすると -23+6t+1=α ... ① f(t)=-2t+6t+1とすると f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とするとt=±1 f(t) の増減表は次のようになる。 -1 1 0 |極大 5 .... 0 + 極小 -3 7 - 5 t f'(t) -3 f(t) 3次関数のグラフでは,接点が異なると接線が異なるから, もの3次方程式 ① が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 -1/0 +トー の解 1 y=a t - Ku y=f(t) 定数 αを分離。 f(-1)=2-6+1 = -3, f(1)=-2+6+1=5 ①の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α, β (αキβ)で接すると仮定すると g(x)-(mx+n)=k(x-a)²(x-B)² (k=0) ←接点 重解 の形の等式が成り立つはずである。 ところが, この左辺は3次式, 右辺は4次式であり矛盾して いる。 よって,3次関数のグラフでは, 接点が異なると接線も異なる。 the これに対して, 例えば4次関数のグラフでは、 異なる2点で接する直線がありうる (前ページの 61 3 関連発展問題 38

回答募集中 回答数: 0