学年

教科

質問の種類

数学 高校生

アークに当てはまる数式か記号を教えてください

先生:中間試験お疲れさまでした。 期末の範囲から数学Bは数学Cになります。 勉強する内容がガラッ と変わるので,気持ちを切り替えて頑張りましょう。 数列の最後にこんな問題にチャレンジして みましょう。 ~~~問題~~~ ある薬D を服用したとき, 有効成分の血液中の濃度(血中濃度)は、一定の割合で減少し, T時間が経過す ると 1/12 倍になる。 薬Dを1錠服用すると,服用直後の血中濃度はPだけ増加する。時間 0 で血中濃度 がPであるとき,血中濃度の変化は次のグラフ(図1)で表される。 適切な効果が得られる血中濃度の 最小値をM, 副作用を起こさない血中濃度の最大値をLとする。 薬D については, M=4, L=40, P=5, T=12である。 (1) 薬D について, 12時間ごとに1錠ずつ服用するときの血中濃度の変化は次のグラフ(図2)のように なる。 図1 血中濃度 P 12174 P OT2T 時間 図2 血中濃度 a3 a2 a 時間 O 12 24 1回目 2回目3回目 を自然数とする。 a, n回目の服用直後の血中濃度である。 α はPと一致すると考えてよい。 第 (n+1) 回目の服用直前には,血中濃度は第1回目の服用直後から時間の経過に応じて減少しており、 薬を服用した直後に血中濃度がPだけ上昇する。 この血中濃度がα+] である。

解決済み 回答数: 1
数学 高校生

この問題の ク で、2が間違ってる理由が分かりません。 何故Nの最大値は境界を通るNの値と一致しないのでしょうか?? 0が合ってる理由は分かりますが2がわならないです。。 教えて欲しいです! また、スセソタチで、何故格子点の最大値が答えになるのでしょうか? 解説お願いします!

95-4+18 第3問 (必答問題) (配点 28) 2 y =++N y- もは x,yを実数として、①の2つの不等式, およびx≧0, y≧0 からなる連立不等 式の表す領域をDとする。 こで,x,y 式 ③、④. る連立不等 部分(埃 た、直線 y=-3x [1] あるサプリメントには, 1包が1g入りで10円の顆粒 1錠が0.2gで30円の錠 剤の二つのタイプがある。 N=ア x+yの表す直線をlとすると このことから,x,yが①を れは傾き 含まれる栄養成分は, 顆粒では1包に0.3g, 錠剤では1錠に0.1gであり, 残り の成分はすべて添加物である。 満たす0以上の実数のとき,Nはx=y= コ で最大値 サシをとることがわ 18 かる。 このサプリメントを二つのタイプの価格の合計が180円以下,かつ,含まれる添 加物の合計が3.6g以下となるように使用し、含まれる栄養成分の合計を 0.1×N(g) とするときの最大値を求めよう。 3 顆粒をx包, 錠剤をy錠使用する場合, N= x+y であり,価格,添加物 の合計の条件は3 x+ イ である。 X+24=(F 8 y≤ ウエ かつ オ x+y カキ 大学Ⅱ, 数学 B 数学C第3問は次ページに続く。) ク | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ ①を満たす0以上の実数x, yで,N= アx+yとなるものが存在する ことと, 直線ℓが領域Dと共有点をもつことは同値である。 よってNの 最大値は,直線lが領域 Dと共有点をもつような最大のNの値と一致する ① ①を満たす0以上のすべての実数x, y, N= ア x+yとなること と、 直線 l が領域Dと共有点をもつことは同値である。 よって, Nの最大 値は, 直線ℓが領域Dと共有点をもつような最大のNの値と一致する ② 直線 l が領域Dと共有点をもつとき、領域D に属する点 (x, y) で 直線 上にあるものが存在する。 よって, Nの最大値は, 直線ℓが領域 Dの境界 を通るときのNの値と一致する 直線 l が領域 Dと共有点をもつとき、領域Dに属するすべての点(x,y) が直線上にある。 よって, Nの最大値は, 直線 l が領域 Dの境界を通る ときのNの値と一致する ( ③ かつ ④ で、 N= ことと, の最大値 致する より きNは たがっ 3-2 eが きの 下図 上が x よび (第2回5) しかし、実際に使用するのは1包単位, 1錠単位であるから, x, yが①を満たす 20以上の整数のときを考えると, Nはx=y= ス および, x= セ y= で最大値 タチをとることがわかる。 (数学ⅡI, 数学 B, 数学C第3問は次ページに続く。) (第2回-6)

解決済み 回答数: 1
数学 高校生

(イ)を2枚目のように、「2」を入れ忘れて、3項間漸化式で特性方程式が重解を持つ場合として、等比数列の形にして解きました。 このミスを正そうとして2を加えようと思いましたが、どこに加えればいいか分かりませんでした。そもそもこの考え方が違うのでしょうか。

漸化式典型的なタイプに帰着 -+1によって定義される数列{a} を考える. ここでbn= (ア)条件 α=2, an+1= an-l 3+an とおくとき,bn+1 を by を用いて表せ.また,{a} の一般項を求めよ. an-1 (東京経済大) (イ) 数列{a} を a=1, a2=2, a,+2-24n+1+an=2(n=1,2,3, …)によって定める. bn=an+1-an とおくとき, by をnの式で表せ。 また, annの式で表せ。 (工学院大 ) an+1=pan+α 型 an+1=pan+g(p, q は定数で, 0, 1) ...... ① に対して,a=pa+g...... ② を満たすように定数αを定め、 ①②よりan+1-α=p(an-α) これより{a-α}が公比』の等比数 列であることを用いて解く. n-1 an+1-an=f(n) 型 階差が分かっている数列の一般項は, 階差を足し上げて求める. n≧2のとき an=a1+(az-a)+(as-a2)+..+(an-an-1)=f(1)+(2)+f(n-1)=a+f(k) 上式はn≧2のとき通用する式で, n=1のとき成り立つか否かは確認が必要. 問題によっては, an-an-1=g(n)が分かっている場合もあり、 公式を丸暗記して適用するとミスしやすい. 上式のシグ マ記号の上下の数 (初めと終わり) は, そのつど具体的に確認しよう. 解答 + an-l (ア) an+1= 1 +1 ① 3+an bn= an-1 ( (1日)=1+( 1 bn+1= == an+1-1 1 an-1 3+an (an-1)+4 -=1+ an-1 an-1 4 an-1 =46+1 分数式は分子を低次に. 3+an :.bn+1=46+1 ... ......③ 1 :.bn+1+ =4b₂+ <>a=4a+1 1 ②より, a1=2のとき, b1=1. を満たすαは 3 {{+*} は公比4の等比数列であり,bn+1/2=4"-1 (01+1/2) An ③④より求める. b1+- 3 4"-1 bn= = ②より, an 3 1 bn +1= 3 4"-1 3 4"+2 3 +1= >± 9. an-1=1 4"-1 (イ) an+2-2an+1+an=(an+2-an+1)-(an+1-an)=bn+1-b" が2なので, bnti bn+1-bn=2. また, b1=42-41=1 Pn よって,{bm}は初項 1, 公差2の等差数列で, b=1+2(n-1)=2n-1 2のとき、作品もん an=a1+(az-a)+(a3a2)+…+ ( an-an-1) =a+b1+b2+... +bn-1 =a+ b1+bn-1. 2 1+{2(n-1)-1} (n-1)=1+ 2 よって、求める式は,,=1+(n-1)²=n-2n+2 (n=1,2,3, ...) (n-1) (n=1でもOK) {6} は等差数列. その和は, (項数) (初項) + (末項) 2

解決済み 回答数: 1
数学 高校生

常用対数 (2)が分かりません( ˘•ω•˘ ).。oஇ そもそも何進数っていう言葉の意味や考え方からあんまり理解できてないのでそこについても説明していただけるとありがたいです😭 ご回答よろしくお願いします🙇🏻‍♀️⸒⸒

304 基本 例 189 常用対数と不等式 logo3 0.4771 とする。 (1)3が10桁の数となる最小の自然数nの値を求めよ。 00000 (類福岡工 (2) 3進法で表すと100桁の自然数Nを, 10進法で表すと何桁の数になるか 指針 (1)まず,3" が10桁の数であるということを不等式で表す。 (2) 進数Nの桁数の問題 不等式数 N <数の形に表す ・・・・・・チャート式基礎からの数学A 基本例題 150参照。 に従って、問題の条件を不等式で表すと 3100 1 N <3100 ......① 10進法で表したときの桁数を求めるには, 不等式① から, 10″N < 10" の形を導 きたい。そこで,不等式① の各辺の常用対数をとる。 各辺の常用対数をとると (1)3" が 10桁の数であるとき 10°31010 解答 9≤n log103<10 ゆえに 9≦0.4771n<10 9 10 よって ≤n<⋅ 0.4771 0.4771 したがって 18.8n<20.9...... この不等式を満たす最小の自然数nは n=19 Nがn桁の整数 →10-1≤N<10° 基本 A 町 比べ 合. ただ 解 B (2)Nは3進法で表すと100桁の自然数であるから 3100-1100 すなわち 399 N < 3100 各辺の常用対数をとると 9910g10 3 log10N <10010g103 99×0.4771 ≦log10N <100×0.4771 47.2329 ゆえに すなわち log10N <47.71 よって 1047.2329 N1047.71 ゆえに 1047 <N<1048 この不等式を満たす自 数は, n=19, 20である が,「最小の」という条 があるので, n=19 したがって, Nを10進法で表すと, 48桁の数となる。 別解 10g103=0.4771 から 100.4771=3 ゆえに, 3% N <3400 から (1004771) ≤N < ( 100.4771) 100 1047.2329 N1047.71 よって ゆえに 1047 <N<1048 したがって, Nを10進法で表すと, 48桁の数となる。 <p=logaM⇔d=" 練習 log102=0.3010, log103=0.4771 とする。 189 (1) 小数で表すとき, 小数第3位に初めて0でない数字が現れるような自 然数nは何個あるか。 〔類 北里大) (2) logs 2 の値を求めよ。 ただし, 小数第3位を四捨五入せよ。 またこの結果を 利用して, 4' を9進法で表すと何桁の数になるか求めよ。

解決済み 回答数: 1