学年

教科

質問の種類

数学 高校生

青い線の3ってどういう意味ですか?

346 基本 例題(全体)(・・・でない)の考えの利用、 |大,中, 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 基本 指針 「目の積が4の倍数」を考える正攻法でいくと、意外と面倒。そこで, (目の積が4の倍数)=(全体) (目の積が4の倍数でない) として考えると早い。 ここで,目の積が4の倍数にならないのは,次の場合である。 [1] 目の積が奇数→3つの目がすべて奇数 [2] 目の積が偶数で, 4の倍数でない→ 偶数の目は2または6の1つだけで,他の 早道も考える CHART 場合の数 2つは奇数 わざ (Aである) = (全体) (Aでない)の技活用 目の出る場合の数の総数は 6×6×6=216 (通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。 [1] 目の積が奇数の場合 3つの目がすべて奇数のときで の法則 (63 と書いても よい。) 3×3×3=27 (通り) 奇数どうしの積は奇数。 1つでも偶数があれば 積は偶数になる。 [2] 目の積が偶数で, 4の倍数でない場合 3つのうち、2つの目が奇数で, 残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54 (通り) [1], [2] から,目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって、目の積が4の倍数になる場合の数は 216-81=135 (通り) 和の法則 (全体) (・・・でない) (

解決済み 回答数: 1
数学 高校生

関西大学公募推薦過去問です。 どのサイトを探しても答えが見つからなかったため、答えを教えて頂きたいです。 また解き方も教えて頂きたいです。

別紙解答用紙(2枚) に解答すること。 【I】は青色の解答用紙に、 【II 】は赤色の解答用紙に記入すること。 【I】 以下の問1問10から8問を選択し、 解答欄に答えなさい。 問1. (log35 + log925)(logs27-log253) を計算しなさい。 問2. sin 1, sin 2, cos 1, cos 2 という4つの数値を小さい方から順に並べなさい。 問3. 袋の中に1から10までの自然数が1つずつ書かれたボールが10個入っている。 この袋からボールを3個同時に取り出すとき、3個のボールに書かれた数の和が 9になる確率を求めなさい。 問4. 一直線上を一定の加速度で進む物体が、 点Aを速さ16m/s で右向きに通過した のちに、点Aから12m離れた点Bを速さ8m/s で右向きに通過した。 物体が点 Aを通過してから再び点 A に戻ってくるまでに要する時間とその時の物体の速 度を求めなさい。 問5. 抵抗値がそれぞれ R と R2 [Ω] の2つの抵抗を並列に接続した。この2つの抵抗 からなる合成抵抗はいくらか。答えだけでなく理由も含めて説明しなさい。 問6. ジクロロプロパンの異性体を全て構造式で示しなさい。 問7.29.4gの硫酸 (分子量 98.0) を 1000mLの水に溶かした。 この水溶液を2.00mol/L の水酸化ナトリウム水溶液でちょうど中和するには何mL必要か、計算しなさ い。 問8. 富士山の山頂では、 水の沸点は100℃かあるいはそれより上か下のどれになるか。 海抜0m地点で水が沸とうする場合と比較しつつ、理由を含めて解答しなさい。 問9. 遺伝子 K は、 欠損するとその細胞は死滅する。 遺伝子 K のあらゆる箇所にラン ダムに変異を導入し、 細胞を回収して遺伝子 K を塩基の挿入や欠失によってコ ドンの読み枠がずれるフレームシフト変異に着目して解析したところ、 C 末端 側でのみフレームシフト変異が集中していた。 この結果から K 遺伝子に ついてどのようなことがわかるかを説明しなさい。 問10. 男女それぞれ 500 人ずつが住んでいる島で、全員にフェニルチオカルバミド (PTC)を用いて苦味を感じる試験を行ったところ、 苦味を感じない人は360 人 であった。この時、 苦味を感じる人の中で、 PTC 不感遺伝子を持つ人は何人 か。ただし、PTC への不感は性に関係のない遺伝で、 1 対の対立遺伝子が関与 し、男性ホモ接合体 (aa) の時だけ発現する。

解決済み 回答数: 1
数学 高校生

青い線について。a<0となっていて、aは負の数と分かるから-aは+aとなり、a+b=9じゃないんですか?

147 重要 例題 86 2次関数の係数決定 [最大値・最小値] (2) ① 定義域を0≦x≦3とする関数 f(x)=ax2-2ax+bの最大値が9,最小値が1の とき,定数a,bの値を求めよ。 数ko な正の定 82 求め、 る。 基本85 指針 a=0 (直線), a>0 (下に凸の放物線), この問題では,x2の係数に文字が含まれているから,αのとる値によって,グラフの 形が変わってくる。 よって, 次の3つの場合分けを考える。 a<0 (上に凸の放物線) ≠0のときは, p.137 例題 80 と同様にして、最大値・最小値をα の式で表し, (最大値) = 9, (最小値) =1から得られる連立方程式を解く。 なお,場合に分けて得られた値が、場合分けの条件を満たすかどうかの確認を忘れな いようにしよう。 f(x)=a(x-1)'-a+b 2 関数の式を変形すると 10 3章 2次関数の最大・最小と決定 解答 [1] a=0のとき f(x)=b (一定)となり,条件を満たさない。 [2] α>0のとき y=f(x) のグラフは下に凸の放物 線となり,0≦x≦3の範囲で f(x) はx=3で最大値f (3) = 3a+b, x=1で最小値f (1) = -a+b をとる。したがって 3a+b=9, -a+b=1 [a>0] 軸 最大 (近) まず, 基本形に直す。 TRAH 常に一定の値をとるから, 最大値 9, 最小値1をと ることはない。 <軸は直線x=1で区間 0≦x≦3内にあるから, a>0のとき 「最小 x=0x=1 x=3 これを解いて a=2,b=3 これは α>0を満たす。 [3] α < 0 のとき y=f(x) のグラフは上に凸の放物 軸から遠い端 (x=3) で 最大 頂点 (x=1) で最 小となる。 この確認を忘れずに。 をとれち [a<0] 軸| 線となり,0≦x≦3の範囲でf(x) はx=1で最大値f (1) = -a+b, x=3で最小値f (3) =3a+b をとる。 したがって 最大 近 <軸は直線x=1で区間 0≦x≦3内にあるから, a< 0 のとき -a+b=93a+b=1 これを解いて a=-2,6=7 これはα < 0 を満たす。 以上から a=2, 6=3 または α=-2,6=7 最小 頂点(x=1) で最大 x=0 x=1x=3 軸から遠い端 (x=3) で 最小となる。 この確認を忘れずに。 10 ■ 問題文が “2次関数" f(x) =ax2+bx+cならばα≠0 は仮定されていると考えるが, “関数” f(x)=ax2+bx+c とあるときは, a=0のときも考察しなければならない。

解決済み 回答数: 0
数学 高校生

例題75.2 私が書いた波線部は、y以外は◯回微分を( ◯ )というふうに書かないからd/dxのk乗というふうに書いているのですか??

2 基本 例題 75 第n 次導関数を求める (1) nπ (1) y=sin2x のとき,y)=2"sin(2x+ 2 nを自然数とする。 00000 sin(x+ であることを証明せよ。 /p.129 基本事項 重要 76, p.135 参考事項 (2) y=x”の第n 次導関数を求めよ。 指針 yan) は,yの第n次導関数のことである。そして,自然数nについての問題である から, 自然数nの問題 数学的帰納法で証明の方針で進める。 (2)では, n=1,2,3の場合を調べてy() を推測し,数学的帰納法で証明する。 注意 数学的帰納法による証明の要領 (数学B) [1] n=1のとき成り立つことを示す。 n=k+1のときも成り立つことを示す。 =kのとき成り立つと仮定し, [2] nπ (1)y(n)=2"sin2x+ 2 ① とする。 解答 [1] n=1のとき y'=2cos2x=2sin2x+ トル)であるから,①は成り立つ。 kл [2]n=k のとき,①が成り立つと仮定すると y = 2* sin(2x+ n=k+1のときを考えると,②の両辺をxで微分して d 2 kл _y(k)=2k+1cos2x+ ( D dx 2 ゆえに yk2'''sin(2x++1)=2*+sin{2x+(k+1)x} よって;n=k+1のときも ① は成り立つ。 [1], [2] から, すべての自然数nについて ① は成り立つ。 (2) n=1,2,3のとき,順に _y'=x'=1,y"=(x2)"=(2x)'=2・1,y" = (x3)"=3(x2)"=3・2・1 したがって,y(n)=n! ...... ① と推測できる。 [1] n=1のとき y=1! であるから, ① は成り立つ。 [2] n=kのとき, ①が成り立つと仮定すると y(k)=k! すなわち dk dxkx*=k! →(ス n=k+1のときを考えると, y=xk+1 で, (x+1)'=(k+1)xであるから dk k+ dk (d²xx*+1) = d² * ((k+1)x^} dockdx y (k+1)=- =(k+1)- dk dxk /dxkx=(k+1)k!=(k+1)! よって, n=k+1のときも ① は成り立つ。 [1], [2] から, すべての自然数nについて①は成り立ち 次の関数の第n次導関数を求めよ (2) y=^ y(n)=n!

回答募集中 回答数: 0
数学 高校生

例題74.2 恒等式という記述がないですがこれでも問題ないですよね? (3枚目を確認してほしいです。2枚目はそこまでの導入も一応載せただけであり、おそらく記述に問題はありません。)

よ。 本 65 基本例 74 第2次導関数と等式 1) y = log(1+cosx) のとき,等式 y"+2eY =0 を証明せよ。 131 00000 自 (2)y=exsinx に対して, y”=ay+by' となるような実数の定数a,bの値を求 めよ。 [(1) 信州大, (2) 駒澤大]基本 73 指針第2次関数y”を求めるには、まず導関数を求める。また,(1),(2)の等式はとも にの恒等式である。 (1)y" を求めて証明したい式の左辺に代入する。 またe-xで表すには,等式 elogppを利用する。 (2)y', y” を求めて与式に代入し, 数値代入法を用いる。 なお, 係数比較法を利用す → ることもできる。 ・解答編 p.94 の検討 参照。 (1)y=2log(1+cosx) であるから 2sinx 1+cosx <logM = klogM なお, -1≦cosx≦1と (真数) > 0 から _ 2{cosx(1+cosx)=sinx(-sinx)} | 1+cosx>0 解答 y' =2• (1+cosx) こでは 1+cosx よって y"=- しょう x2+3), -12x)' x)', in 2x) (1+cosx) 2(1+cosx) _ _ _ 2 ( Nhật (1+cosx) [ == 1+cosx また, Y = log(1+cosx) であるからex=1+cosx 2 ゆえに 2e2 2 2 = y 1+cosx よって y"+2e-1/2=- 2 2 + =0 1+cosx 1+cosx x+cos2x=1 elogp=pを利用すると elog(1+cosx)=1+cosx 3章 1 高次導関数、関数のいろいろな表し方と導関数 ga), gay anx cos2y g(x)をxで ・もの。 v' (2) y=2e² sinx+ex cos x=e²x (2 sinx+cosx) y=2e(2sinx+cosx)+e (2cosx−sinx) =e2x(3sinx+4cosx) ...... ① ゆえにay+by=aesinx+be2x(2sinx+cosx) =e2x{(a+26)sinx+bcosx} y" =ay+by' に ① ② を代入して 2x (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} 4=b ③はxの恒等式であるから, x=0を代入して π を代入して また,x=2 これを解いて このとき って 3e"=e" (a+26) a=-5,6=4 (③の右辺) 4(e2)(2sinx+cosx) +ex(2sinx+cosx) 参考 (2) のy"=ay+by' のように、未知の関数の 導関数を含む等式を微分 方程式という(詳しくは p.353 参照)。 ③が恒等式 ③に x=0, を代入しても 成り立つ。 =e2x{(-5+2.4)sinx+4cosx)=(③の左辺) 逆の確認。 a=-5,b=4 [S][]

解決済み 回答数: 1
数学 高校生

例題68.2 (赤で書いているところは無視してください) 2枚目のように、自然対数をとった時yを|y|にしていたら 「x>0よりy>0」の記述はなくても大丈夫ですか?

基本 例題 68 対数微分法 次の関数を微分せよ。 (x+2)4 (1)y= y= 3/ x²(x²+1) (2)y=xxx>0) 00000 [(2) 岡山理科大] 基本 67 利用。 x) x) るから ex) とら |指針 (1)右辺を指数の形で表し,y=(x+2) xf (x+1)として微分することもできるが 計算が大変。 このような複雑な積・商・累乗の形の関数の微分では, まず, 両辺 (の絶 対値) の自然対数をとってから微分するとよい。 →積は和,商は差, 乗は倍となり, 微分の計算がらくになる。 (2)(x)=x-1 や (α*)' =α*10ga を思い出して, y'=xxxl=x* または y=x*10gxとするのは誤り! (1) と同様に,まず両辺の自然対数をとる。 CHART 累乗の積と商で表された関数の微分 両辺の対数をとって微分する (1) 両辺の絶対値の自然対数をとって log|y|=//{410g|x+2|-210g|x|-log(x+1)} 解答 両辺をxで微分して1=13142 2 2x y x x2+1 よって y'= 1/3 y (x+2) = 1.4x(x2+1)-2(x+2)(x+1)-2x2(x+2) (x+2)x(x+1) 1-2(4x-x+2) 3 3(x+2)x(x+1) Vx2(x2+1) 2(4x2-x+2) 3/ x+2 3x(x+1) Vx(x+1) (2)x>0であるから, y>0である。 両辺の自然対数をとって 両辺をxで微分して logy=xlogx y = 1.10gx+x.- = y y=(logx+1)y=logx+1)x* よって ||y|= x+2/ |x(x²+1) として両辺の自然対数をと (対数の真数は正)。 なお, 常に x 2 +1> 0 対数の性質 loga MN=loga M+logaN M loga N -=log.M-loga N logaM=kloga M (a>0, a+1, M>0, N>0) 両辺>0を確認。 <logy をxで微分すると x (logy)'=y'

未解決 回答数: 1
数学 高校生

例題72.2 f(0)の求め方はこれでもいいのでしょうか??

演習 例題 72 関数方程式の条件から導関数を求める 関数f(x) は微分可能で, f'(0) = a とする。 00000 (1) 任意の実数x, y に対して,等式f(x+y=f(x)+f(y) が成り立つとき, f(0), f'(x) を求めよ。 (2)任意の実数x,y に対して, 等式f(x+y=f(x)f(y), f(x)>0が成り立つ f(0) を求めよ。 また, f'(x) を α, f(x) で表せ。 演習 70 このようなタイプの問題では,等式に適当な数値や文字式を代入することがカギ となる。 f (0) を求めるには, x=0 や y = 0 の代入を考えてみる。 また,f'(x) は 定義 f'(x)=limf(x+h)-f(x) h→0 h に従って求める。 等式に y=h を代入して得られる式を利用して,f(x+h)-f(x)の部分を変形していく。 きを (5) (1) f(x+y=f(x)+f(y) ..... ① とする。 解答 ① に x=0 を代入すると f(y)=f(0)+f(y) f(0)=0 x=y=0を代入してもよい。 【アの両辺からf (y) を引く。 また, ① に y=h を代入するとf(x+h)=f(x)+f(h) f(x+h)=f(x)+f(h) から 12 ma ゆえに ゆえに f'(x)=lim f(x+h)−f(x) f(h) f(x+h)-f(x)=f(h) = =lim [大工製受] h→0 h h→0 h f(+h)-f() =lim f(x)+ho (2) f(x+y=f(x)f(y) f(0+h)-f(0) ②にx=y=0 を代入すると ② とする。 (*) lim -=f'(■) =f'(0)=a h→0 h h (*) f(0)=0 ...... f(0)=f(0)f(0) f(0) 2次方程式とみる。 よって f(0){f(0)-1}=0 (2 (0) f(0) > 0 であるから f(0)=1 また, ② に y=h を代入するとf(x+h)=f(x)f(h) 条件f(x)>0に注意。 大 (S) ゆえに BC [大 f'(x)=lim f(x+h)-f(x) h f(x){f(h)-1} =lim lim f(x)f(h)-f(x) h→0 h→0 h (E) h→0 (2) AB Ta f(0+h)-f(0) =f(x)・lim h h→0 dx f(0) = 1, f'(0)=α = f(x)• f'(0) =af (x) = < 8

未解決 回答数: 1
数学 高校生

赤で丸したところについて説明して欲しいです🙇🏻‍♀️՞

480 解答 基本 例 44 連立漸化式 (1) 00000 数列{an}, {bm} を a=b=1, an+1=an+4bn, bn+1=an+bnで定めるとき、数 |{a},{bm} の一般項を次の(1), (2) の方法でそれぞれ求めよ。 (1) an+1+abn+1=β(an+abn) を満たすα, Bの組を求め, それを利用する (2) bn+2, bn+1, b, の関係式を作り,それを利用する。 基本41 重要 5 指針 本間は, 2つの数列{a},{bm} についての漸化式が与えられている。このようなタイ プでも、既習の漸化式に変形の方針が基本となる。 (1)解法 1. 等比数列を作る 数列 {an+ab} を考えて,これが等比数列となることを目指す。 すなわち an+1+αbn+1=B (an+αb) が成り立つようにα, β の値を決める。 →本問では, 値の組 (α, β) が2つ定まるから,一般項 α+●b を2つの式で 表した後,それをan, bn の連立方程式とみて解く。 注意 値の組 (α, β) が1つしか定まらない場合は、基本例題45のように対応する。 (2) 解法 2. 隣接3項間の漸化式に帰着させる 2つ目の漸化式から an=bn+1-bn (*)よって an+1=bn+2-b1 {bm} についての隣接3項間の漸化式を導くことができる。 →基本例題41参照。 まず, 一般項bn を求め,次に (*) を利用して一般項 αn を求める。さ この2式を1つ目の漸化式に代入し, an+1, an を消去することによって、数列 (1) an+1+αbn+1=an+4bn+α(an+bn) =(1+a)an+(4+a)bnNDS よって, an+1+αbn+1= (a+b) とすると (1+α)an+(4+α)bn=βan+aßbn これがすべてのnについて成り立つための条件は 1+α=β,4+α=aβ a+ an+1=an+4b b+1=a+b を代入 an, bn についての恒 ゆえに Q2=4 よって α=±2 ゆえに (a,β) = (2,3), (-2,-1) よって a1+261=3; an+1+2bn+1=3(an+2b), an+1-26n+1=- (an-26), α1-2b1=-1 ゆえに, 数列{an+26} は初項 3, 公比3の等比数列; 数列{an-2b} は初項-1,公比-1の等比数 よって 列。 an+2bn=3.3"-1=3n an-2bn=-(-1)"'=(-1)"... 3"+(-1)" (①+②)÷2から an= (①-②) ÷4から bn= 4 3"-(-1)" 等式とみて、係数比較 アからを消去する と 4+α=q(1+α) α=2, β=3 a=-2, β=-1 ①出ar-l なぜ を消去。 =(-1)h になるんですか? 10. 消去

解決済み 回答数: 1
数学 高校生

赤で線を引いた所で、(n+1)(n+2)分のan+1がbn+1になる理由が分からないので教えてください🙇‍♀️

近畿大 ] 基本34 anの える。 例題 基本 la=2, an+1= an (1)n(n+1) ((2) an 39 an+1=f(n) an+g型の漸化式 n an+1によって定められる数列{a} がある。 -=bn とおくとき, bn+1 を bn とnの式で表せ。 をnの式で表せ。 4 an (1) bn= n(n+1)' bn+1= an+1 指針 (n+1) (n+2) で割る。 (n+1)(n+2) を利用するため, 漸化式の両辺を ・基本25 (2) (1) から bn+1=bn+f(n) [階差数列の形]。 まず, 数列{6} の一般項を求める。 n+2 (1) an+1= n 解答 an+1の両辺を (n+1) (n+2) で割ると an+1 (n+1)(n+2) 1 an n(n+1) + (n+1)(n+2) 2+1) (n+2)...(*) an -=bn とおくと n(n+1) bn+1=6n+ 1 (n+1)(n+2) (2)61= 1.2 bn=b₁+ =1+ a1 =1である。 (1) から, n≧2のとき 1 n-1 =1+ ◄an=n(n+1)bn, an+1=(n+1)(n+2)6n+1 を漸化式に代入してもよ い。 bn+1-bn 1 (n+1)(n+2) ◆部分分数に分解して,差 の形を作る。 1 k+2 n n+1 途中が消えて、最初と最 後だけが残る。 3n+1 k=1(k+1)(+2) =1+(1/2)+(赤) =1+ 3 1 = 2 n+1 2 n+12(n+1) ① b=1であるから, ① は n=1のときも成り立つ。よって an=n(n+1)bn=n(n+1)・ 3n+1 n(3n+1) = 2(n+1) 2 ①初項は特別扱い 上の例題で,おき換えの式が与えられていない場合の対処法 n+2 検討漸化式のαに が掛けられているから, 漸化式の両辺に×(nの式)をして n 【PLUS ONE f(n+1)an+1=f(n)an+g(n) [階差数列の形] に変形することを目指す。 (n+1)の式n の式 まず,漸化式の右辺にはnn+2があるが, 大きい方のn+2は左辺にあった方がよい あろうと考え、両辺を (n+2) で割ると D an+1 an A n+2 n n+2 2つの項 のうち, 左側の分母をf(n+1), 右側の分母をf(n) の形にするために, A 両辺を更に(n+1)で割ると、解答の(*) の式が導かれてうまくいく。

回答募集中 回答数: 0