数学
高校生

例題72.2
f(0)の求め方はこれでもいいのでしょうか??

演習 例題 72 関数方程式の条件から導関数を求める 関数f(x) は微分可能で, f'(0) = a とする。 00000 (1) 任意の実数x, y に対して,等式f(x+y=f(x)+f(y) が成り立つとき, f(0), f'(x) を求めよ。 (2)任意の実数x,y に対して, 等式f(x+y=f(x)f(y), f(x)>0が成り立つ f(0) を求めよ。 また, f'(x) を α, f(x) で表せ。 演習 70 このようなタイプの問題では,等式に適当な数値や文字式を代入することがカギ となる。 f (0) を求めるには, x=0 や y = 0 の代入を考えてみる。 また,f'(x) は 定義 f'(x)=limf(x+h)-f(x) h→0 h に従って求める。 等式に y=h を代入して得られる式を利用して,f(x+h)-f(x)の部分を変形していく。 きを (5) (1) f(x+y=f(x)+f(y) ..... ① とする。 解答 ① に x=0 を代入すると f(y)=f(0)+f(y) f(0)=0 x=y=0を代入してもよい。 【アの両辺からf (y) を引く。 また, ① に y=h を代入するとf(x+h)=f(x)+f(h) f(x+h)=f(x)+f(h) から 12 ma ゆえに ゆえに f'(x)=lim f(x+h)−f(x) f(h) f(x+h)-f(x)=f(h) = =lim [大工製受] h→0 h h→0 h f(+h)-f() =lim f(x)+ho (2) f(x+y=f(x)f(y) f(0+h)-f(0) ②にx=y=0 を代入すると ② とする。 (*) lim -=f'(■) =f'(0)=a h→0 h h (*) f(0)=0 ...... f(0)=f(0)f(0) f(0) 2次方程式とみる。 よって f(0){f(0)-1}=0 (2 (0) f(0) > 0 であるから f(0)=1 また, ② に y=h を代入するとf(x+h)=f(x)f(h) 条件f(x)>0に注意。 大 (S) ゆえに BC [大 f'(x)=lim f(x+h)-f(x) h f(x){f(h)-1} =lim lim f(x)f(h)-f(x) h→0 h→0 h (E) h→0 (2) AB Ta f(0+h)-f(0) =f(x)・lim h h→0 dx f(0) = 1, f'(0)=α = f(x)• f'(0) =af (x) = < 8
21f(x+y=fafy-①とする ①に文=0を代入すると、 fcy = fco/fcy) つまりf101=14

回答

f(y)=0のときもf(y)=f(0)f(y)が成り立つので、f(y)≠0であることを説明する必要があります。

f(y)=0のとき、任意の実数yについてf(y)=0が成り立つということなのでf(x)=0と表せるが、f(x)>0のため不適。
よってf(y)≠0なのでf(y)=f(0)f(y)の両辺をf(y)で割るとf(0)=1。

この回答にコメントする
疑問は解決しましたか?