学年

教科

質問の種類

数学 高校生

θに制限がない時の解についてです。 (3)ではなぜ5/3π+nπが含まれないんでしょうか?

直す P(a, b) 1 x [2] π YA. Q(-b, a) 1 p.193 基本事項2参照) ICOS cos (--)-c COS .193 基本事項 =0 とおくと sin (2+0) = cos9 sin(+0) - sing cos (1/2 + 8) = -sin 基本例題 121 三角方程式の解法(基本) 0≦0 <2πのとき, 次の方程式を解け。 また、 0 の範囲に制限がないときの解 を求めよ。 (1) sinQ= CHART & SOLUTION 三角方程式の解法 単位円を利用 右の図のように, 角0 の動径と単位円の交点を P(x, y), 直線OP と直線 x=1の交点を T (1, m) とすると x=cos 0, y=sin0, m=tan0 1と単位円の交点 (1) 直線y= 2 (2) 直線x=- (1) 0=- -1 1/1/201 Q O 1 2 1 -2 (2) cos0=- (3) T(1,-√3) をとり、 直線OT と単位円の交点 これらをP, Q とすると, 求める 0 は動径 OP, OQ の表す角である。 と単位円の交点 1 解答 求めるのは,下下のそれぞれの図において, 動径 OP, OQの表す角である。 00 <2πにおける解は 5 π T 6' ya 0 = ²/3 (2) 0=- 1 2 1P π, YA 4/3 O (3) tan0=-√3 π (2) cos=- cos 1 x また,0の範囲に制限がないときの解は,nを整数 として (1) 0=T +2nπ, & π+2nt 6 4 2012 (2) 0=²²x+3x₂+²x+2nT (3) 0=- = ²/3π+na π tnr 02 p. 193 基本事項 3 y4 1 T-1 O ((x,y) -1 2 5 (3) 0= ²/3, ³ YA P 1 3 O T(1, m) √3 /1 x TC Q F T 199 inf. (2) の解はまとめて 0= ± ²/x+2nx としてもよい。 4 16 PRACTICE 121 0≦0<2πのとき、次の方程式を解け。 また,0の範囲に制限がないときの解を求めよ。 √√3 (1) sinθ= 2 (E) (3) tan0=√3 三角関数のグラフと応用 Y

解決済み 回答数: 1
数学 高校生

質問です ⑶の問題が解説見てもよく分からないので分かる方解説お願いします!

2次関数, 三角関数 指数, 対数を中心にして 本 32 三角方程式の解の個数 f(0)=2sin20+4sin0+3cos 20 (0≦<2π) について,次の問に答えよ. (1) x=0 とするとき, f(0) をxの式で表せ. (2) f(0) の最大値、最小値を求めよ.また, そのときの日の値をすべて求めよ。 (3)方程式 f(0)=α の相異なる解が4個であるような実数α の範囲を求め (岩手) (解答) (1) . TOSSERRAOLI f(0)=2sin20+4sin0+3cos 20もさ =2sin²0+4sin 0+3(1-2sin²0) ) (SD)=7 (1 30,5 (3) =-4sin20+4sin0+3 x = sin0 とすると, f(0)=-4x2+4x+3 (2) g(x)=-4x2+4x+3とすると, \2 96x)=-4(x - 2)² +4 ...1 x=sin0 (0≦02m) より, -1≦x≦1 である. f(0) の最大値、最小値は, -1≦x≦1における g(x) の最大値、最小値を求めればよい. 1≦x≦1において①のグラフは図のようになる. sin0=-1より, 0=- (3)との対応関係を考える. -1<x<1ならば2つの 3 2π 以上より, 最大値40=4- A x=sin0 (002m) であるから、 1つのxの値に対して、 x=1 グラフより,g(x)はx=- )はx=1/12の 一のときに最大値4をとり、そのときのは, sin0 = 1/28より,0=17/08 5 また,g(x)はx=-1のときに最小値-5をとり,そのときの0は, x=-1 ならば1つの (6 BOJ==) 1000 (0 = 1/2) のとき、最小値-50=- ならば1つの00= Isti 0 0 (0 = 3/1 7 S+IVE 1 x 0 -1 π 0₁7/2 4 3. 011 2 y=-4x2+4x+3 (0-012/2のとき) -5 0₂ T ***ATSOTS @ 48 * * X * 2π x = sin0 -y=a -1<x<1である1つのxに対して, 2010 の2つの0が存在する 0 が対 よ を求 を考 <補 f 解 まのがるるといとい x まで の相 がら x か

解決済み 回答数: 1
数学 高校生

144.2 「y=(x+1/2)^2-5/4」と書いたところから直で 「したがって...」と記述してもいいですか?

重要 例題 144 三角方程式の解の個数 aは定数とする。0に関する方程式 sin²0-cos0+α=0 について,次の問いに答 えよ。ただし、0≦0 <2π とする。 (1) この方程式が解をもつためのαの条件を求めよ。 (2) この方程式の解の個数をaの値の範囲によって調べよ。 指針 cos0=xとおいて, 方程式を整理すると 前ページと同じように考えてもよいが, 処理が煩雑に感じられる。そこで, x²+x-1-a=0 (-1≤x≤1) WATC ① 定数αの入った方程式 f(x)=αの形に直してから処理に従い,定数aを右 辺に移項した x2+x-1=αの形で扱うと、関数 y=x2+x-1(-1≦x≦1) のグラフと直 線y=a の共有点の問題に帰着できる。 直線y=a を平行移動して, グラフとの共有点を調べる。 なお, (2) では x=-11であるxに対して0はそれぞれ1個, -1<x<1であるxに対して0は2個あることに注意する。 解答 COS0=x とおくと, 0≦0<2πから 方程式は (1-x2)-x+a=0 したがって x2+x-1=a 5 f(x)=x2+x-1 とすると = ( x + 1 1/2)²³ - 1²/1/2 (1) 求める条件は、-1≦x≦1の範囲で, 関数 y=f(x) の グラフと直線y=α が共有点をもつ条件と同じである。 よって、 右の図から ≦a≦1 5 (2) 関数y=f(x)のグラフと直線y=a の共有点を考えて 求める解の個数は次のようになる。 5 4 5 [1] a<-1, 1 <a のとき共有点はないから 0個 [2] a=-- -1≤x≤1 5 [3] <a<1のとき f(x)=(x+ のとき,x=- から 2個 =1/3から 2 1 2 <x<0 の範囲に共有点はそ [6]→ [5] - 練習 ④ 44 よって調べよ。 ただし, 0≦02m とする。 [4]/ [3]+ [2] この解法の特長は, 放物線を 固定して, 考えることができ るところにある。 [6] - [5] [4] - [2]+ [4]+ グラフをかくため基本形に。 iy=f(x) ya XA 11 0 -1<x<- 1 2' れぞれ1個ずつあるから 4個 [4] α=1のとき、x=-1 から 3個 0 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから2個 [6] α=1のとき、x=1から1個 π 重要 143 1 y4 1 O 12 1x [Q 20 152-7605724 0に関する方程式 2cos20-sin0-a-1=0の解の個数を,定数aの値の範囲に Cp. 226 EX90, 91 [3] 225 144 24 三角関数の応用 4章 23

回答募集中 回答数: 0